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ABSTRACT

This research presents the numerical analysis of the triply coupled flap-wise,
cord-wise and torsional vibrations of flexible rotating blades. Euler-Bernoulli bending
and St. Venant torsion beam theories are considered to derive the governing differential
equations of motion. Based on Finite Element Methodology (FEM), the cubic “Hermite”
shape functions are implemented where the solution of the equations results in a linear
eigenproblem. Then, the Dynamic (frequency dependent) Trigonometric Shape Functions
(DTSF’s) for beam’s uncoupled displacements are derived. The application of the
Dynamic Finite Element (DFE) approach to the solution of the governing equations is
then presented. The DFE formulation, based on the weighted residual method and the
DTSF’s, results in a nonlinear eigenproblem representing eigenvalues and eigenmodes of
the system. The applicability of the DFE method is then demonstrated by illustrative
examples, where a Wittrick-Williams root counting technique is used to find the system’s
natural frequencies. The DFE approach, an intermediate method between FEM and
“Exact” formulation, is characterized by higher convergence rates, and can be
advantageously used when multiple natural frequencies and/or higher modes of beam-like

structures are to be evaluated.
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CHAPTER 1: INTRODUCTION

1.1. Introduction

The study of the dynamic behaviour of flexible structures is an intrinsic part of
design of such systems. The determination of dynamic characteristics of structures is very
important in many terrestrial engineering applications, such as automotive industries,
industrial robots design and automations, buildings and bridges, and aerospace structural
problems such as fixed and rotary aircraft wings and structures, control surfaces, satellite
antenna and solar and many more simple or complicated systems. In many cases, when
there is a source of vibration with variable frequency, the vibration behaviour of a system
is studied to avoid resonance in transient response, where design engineer is to find the
frequency spectrum of the system and check the interference of working frequencies and
the system natural frequencies.

Besides, in many structural problems, the system modal analysis is also important,
especially when the design is subject to geometric considerations. For example, the nodes
locations in the natural modes could be used to define the supports. Also, the changes in
the boundary conditions can considerably affect the system’s natural frequencies.

Beams vibration analysis plays a significant role in the investigation of the
dynamic behaviour of flexible structures, since many systems can be simply represented
by a beam model. Bridges, slender propellers blades, airplane wings and satellite
antennas are modeled, at least for the first few natural frequencies, as beam structures.
Therefore, many research works have been carried out on the new analytical and
numerical methods for beam vibrations with different mechanical and geometrical
characteristics [1-13,15-25,27-30].

Beams exhibit different vibrational behaviours depending on their mechanical and
geometrical properties. A beam can undergo single or multiple bending (lateral)
vibrations, torsional vibrations, longitudinal vibrations and/or a combination of some or
all displacements. For the coupled systems, the differential equations governing the
structural vibrations are coupled. The coupled equations are widely used in modeling and

analysis of aeronautical systems, namely the aircraft wings and stator and rotary



compressor and turbine blades, etc. exhibiting coupled bending-bending, bending-torsion
or bending-bending-torsion vibrations.

Houbolt and brooks (1956) [1] investigated the beam coupled vibrations by
formulating a rotating beam model with coupling between flap-wise bending, cord-wise
bending and torsion, where the beam has variable cross-sectional properties, twist angle
and is subjected to external aerodynamic lift and drag forces. The Euler-Bernoulli
bending and St. Venant torsion beam theories were considered where the shear
deformation and rotary inertia effects are neglected.

Computers opened a new horizon to engineering problems and many researchers
then focused their efforts to develop numerical methods where the exact analytical
solutions to the system’s governing equations are not known. Murthy (1976) [2] used the
Transmission Matrix Method (TMM) to solve the triply coupled differential equations
governing the vibrations of twisted non-uniform blades. The state vector (satisfying the
differential equations) and backward transmission matrix were employed to form the
system’s eigenproblem. The eigenproblem was then solved to obtain natural frequencies
and mode shapes of the blade. In another attempt, Murthy used the Integrating Matrix
Method (IMM) to solve the bending-torsion coupled equations of rotating beams [3,4],
where equations are written in matrix form and are integrated to develop the system
eigenproblem.

Lang and Nemat-Nasser (1979) [5] proposed a new quotient method to investigate
the out-of-plane, in-plane and torsional vibrations of pre-twisted non-uniform blades.
This method is based on a variational statement of equations and can be used to find the
blade’s natural frequencies and mode shapes.

Magari et al. (1987) [6] introduced a Finite Element Method (FEM) and the
Hermite bending shape functions were employed to solve the equations of motion for
triply coupled beam vibrations. The resulting equations were then solved using
MSC/NASTRAN program. The development of numerical methods was continued by
Surace et al. [16,17] and they investigated the bending-bending-torsion coupled beam
vibrations using the integral formulation based on Green functions (structural influence

functions).



Besides the numerical approaches, there have also been some attempts to find the
analytical solutions of the differential equations governing the coupled beam dynamics.
Based on the Dynamic Stiffness Matrix (DSM) method, Banerjee introduced the exact
solutions for different coupled bending-torsion beam vibrations [7-13] where the
Wittrick-Williams (W-W) root counting algorithm [14,15] was used to find the system’s
natural frequencies. The exact DSM solution is limited to simple problems and it cannot
be used to solve the complex beam geometries and configurations.

Furthermore, many researches have also been focused on more advanced beam
theories to incorporate the effect of warping, shear deformation and rotary inertia, etc.
Arpaci et al. [18] introduced an exact solution method for thin-walled open cross section
beams considering warping and rotary inertia effects. Subrahmanyam et al. [19]
presented an approach for beam vibrations analysis including the shear deformation,
rotary inertia, warping and thermal effects. This model can be used for turbine blades
where the beam does not satisfy Euler-Bernoulli assumptions and the thermal effects
must be taken into account [19]. The effect of warping on the axially loaded coupled
bending-torsion beam was investigated by Jun e al. [20]. As shown in this research,
ignoring the warping effect causes decrements in natural frequencies. Also, for higher
modes, the warping effect is more pronounced.

The Dynamic Finite Element (DFE) method, first introduced by Hashemi (and his
coauthors) [21-25], represents an intermediate method between analytical exact DSM and
numerical FEM methods. In this approach, the Dynamic (frequency dependent)
Trigonometric Shape Functions (DTSF’s), employed as approximation functions, are
formulated based on the solution of beam uncoupled governing differential equations.
Similar to the DSM method, the DFE produces a non-linear eigenvalue problem and the
Wittrick-Williams algorithm [14,15,26] can therefore be used to extract the natural
frequencies of the system. The DFE has been applied to the uncoupled flexural and
bending-torsion vibrations of uniform and non-uniform beams where the equations of
motion are geometrically and/or materially coupled, resulting in excellent convergence
rates [21-25].

It has been proven that the DFE combines the advantages of the FEM and DSM

methods and results in an accurate, flexible, and systematic method to determine the



natural frequencies of beams and beam-like structures. The DFE can be advantageously
used for preliminary design of mechanical systems made of flexible beam assemblies,
where designer neceds to portrait the general dynamic behaviour of the system with
acceptable accuracy before starting the detailed analysis and design. Complete modeling
of complex systems takes relatively long time and is expensive, and employing the DFE
especially for systems with repeated sub-structures can provides a versatile tool to depict

the dynamic characteristics of the system.

1.2. Objective

The objective of this thesis is to develop and validate a new DFE formulation for
triply coupled bending-bending-torsion vibrations of rotating and non-rotating beams. A
classical FEM approach is also presented and the two methods are compared. Both DFE
and FEM formulations are developed based on Galerkin-type weighted residual method
(WRM). Due to the nature of the DFE method, the resulting eigenproblem is nonlinear. A
dedicated Wittrick-Williams root counting algorithm [14,15,26] which provides a
powerful tool to evaluate the natural frequencies of nonlinear eigenproblems is
introduced. The method can then be implemented to investigate the natural frequencies
and corresponding modes of free vibrations of dually and triply coupled beams. The
method presented in this research is able to calculate the i eigenvalue (natural
frequency) of the resulting nonlinear eigenproblem.

This research also investigates the coupled vibrations of flexible beams and the
effect of various geometric and dynamic parameters on the system behaviour. The
dynamic coupling (caused by rotating speed and/or constant axial load) and geometrical
coupling (caused by pre-twist angle and/or distance between mass and elastic center) are
studied by several illustrative examples and the natural frequencies and modes of free
vibrations of beams and rotating blades are evaluated. These examples provide a general
understanding and a better insight to the free vibrations of beams and blades.

The DFE and FEM formulations presented in this research can be used to evaluate

the fundamental natural frequencies and the corresponding modes of a beam structure. In



many engineering design problems, the designer needs to get a general idea about the
dynamic behaviour of the system even before a detailed and rigorous FEM analysis starts.

In such cases, having a reliable, simple and accurate simulation tool is helpful.

1.3. Thesis Organization

In order to construct an accurate DFE formulation for the free vibration analysis
of blades, a progressive procedure is adopted. The modeling starts with the well-known
classic FEM method for beam’s pure bending vibration and finally comes to an end with
a DFE model for coupled bending-bending-torsion vibrations of rotating blades.

In Chapter 1, the importance of mechanical vibrations and the vibration analysis
of flexible structures, in general, and the coupled beam vibrations, in particular, are
briefly discussed. Some of the numerical methods used in analysis of rotating and non-
rotating beams are reviewed, and the DFE as a bridge between exact solution method
(DSM) and finite element method (FEM) is outlined.

In Chapter 2, the equations of motions for the coupled flap-wise, cord-wise and
torsional vibrations of rotating beams along with the boundary conditions are presented.
The Euler-Bernoulli bending and St. Venant torsion beam theories are considered where
the shear deformation, rotary inertia and warping are neglected. The equations are
coupled due to the geometrical and mechanical properties and the dynamics of the beam.
Then equations of motion and the boundary conditions for coupled bending-torsion and
bending-bending vibrations are extracted from the triply coupled equations.

In Chapter 3, a dedicated Wittrick-Williams root counting algorithm for
calculation of natural frequencies of a flexible structure is discussed. The solution
methodology is explained for the non-linear eigenvalue problems resulting from the
frequency dependent element dynamic stiffness matrices. As it is then briefly discussed,
the corresponding modes of coupled vibration can be extracted using a perturbation
technique.

In Chapter 4, the Galerkin based finite element methodology is described and the

coupled equations of motion along with static Hermite polynomial shape functions are



used to derive the FEM method. The FEM approach then is applied to the triply coupled
beams as well as coupled bending-torsion and bending-bending beams to verify the
solution method.

In Chapter S, the Dynamic Finite Element (DFE) formulation is introduced. The
Dynamic Trigonometric Shape Functions (DTSF’s) are used to form the frequency
dependent stiffness matrix. The Wittrick-Williams root counting method is then
employed to find the natural frequencies. Some illustrative examples of dually and triply
coupled beams are then discussed to prove the validity of the method.

In concluding Chapter 6, the formulations introduced in this research work are
reviewed. A comparative study between DFE and FEM methods is then provided, where
the advantages of each method are highlighted. At the end, the direction and future of the
research is stated.

In appendix A, the solutions of uncoupled bending and torsion vibrations of a
cantilever beam are derived. The solutions are used to develop Dynamic Trigonometric
Shape Functions for DFE method.

Appendix B introduces the program logic and the algorithm for FEM and DFE
methods, and explains the differences between two programs. Also the functions which

have been developed and used in the FEM and DEF programs are discussed.



CHAPTER 2: EQUATIONS OF MOTION GOVERNING COUPLED
VIBRATIONS OF ROTATING BEAMS

2.1. Introduction

The governing differential equations of motion for coupled vibrations of rotating
beams incorporating different levels of complexity have been introduced in several
occasions [1,16,22,23,25]. The proposed models have been developed using different
methods and consist of one or more geometric/dynamic parameters leading the coupling
between equations of motion. Regardless of the derivation method, the resulting general
equations can be easily reduced to special cases such as constant twisting angle, non-
rotating beam with constant tension, rotating beam without eccentricity, coupled bending-
torsion [2,16], bending-bending [2,16,27] and the simple case of uncoupled bending and

torsion vibrations of a beam [34].

2.2. Model

A cantilever rotating beam (Figure 2.1) with length L, and an offset e; from
rotating axis (i.e. hub radius), distance e between mass centroid and elastic (shear) center
and rigid cross-section is the basis of the model. All rigidities are assumed to be constant,
or piecewise constant, along x-axis. The rigidities are: flexural rigidities EI,, El,, EI,,
and Torsional rigidity GJ. The rigidities can be determined experimentally or

theoretically. The beam has a pre-twist angle 6.
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Figure 2.1: The beam configuration and geometrical parameters.

The beam undergoes three displacements: w and v are out-of-plane and in-plane
displacements, respectively, associated with bending vibrations in two directions and ¢ is

the rotational displacement associated with torsion.

2.3. Assumptions

The Euler-Bernoulli bending and St. Venant shear beam theories are exploited.
The shear deformation, the rotary inertia effect, warping and thermal effects are
neglected. The small linear displacements are considered, the axial displacements are
neglected and the bending slope is set equal to the derivative of bending displacement

with respect to spatial variable x.

2.4. Governing Differential Equations of Motion

There have been many studies to derive the differential equations governing the
free vibrations of rotating blades. Houbolt and Brooks [1] followed the stress-strain
analysis in which the longitudinal strains are expressed in terms of two perpendicular

bending displacements and torsional displacement. The stress is then integrated over the



beam cross sectional area to evaluate the flap-wise, cord-wise and torsion moments at any
section of the beam. The resulting internal and external moments and forces are used in
Newton’s second law to relate the forces with accelerations. The Newton’s second law
results in the final differential equations of motion. Magari et al. [6] employed the
Hamilton’s principle in which the action function is minimized in the time interval, and
the internal potential energy and kinetic energy are calculated in terms of displacements.
Using any of these two methods, the displacements are functions of time (f) and x and
final differential equations of motion consist of time and spatial partial derivatives. Using
separation of variables technique and based on the simple harmonic motion assumption,
one can get the final spatial differential equations, governing the free vibrations of

rotating beams as follow:

(EIW"+EIV")" - (Tw') - [Q’em(x + ¢, )p cos O]

- o’m(w+egcosd) =0

2.1

(ELV"+EI,w)" - (IV') +[Qem(x + ¢,)$sin ]

+Q’em@psin @ — w’*m(v—edsin@) - Q*mv =0

2.2

—(GJ') —Q%em(x +e,)(v'sing —w' cos )
+Q%emysin 0+ Q*m(x 2, — k2, )pcos20 2.3

-&’mkld+ w’em(vsin@ —wcosf) =0

where “ 7 ” represents the differentiation with respect to x, @ is a result of two times
differentiation with respect to time, @ is the angular (rotating) velocity of the beam about
z-axis, m is the mass per unit length of the beam and T, the tensile axial force acting on

the beam, is the centrifugal force and is calculated at any point of beam from:

T(x) = f Qm(x +e,)dx 2.4



One can see that the differential equations (2.1) to (2.3) are coupled due to the geometric

parameters e and 6, and the dynamic parameters 2.

2.5. Boundary Conditions

For free vibrations of a cantilever beam, all displacements at the clamped end, and
the internal forces and moments at free end are equal to zero. The boundary conditions

for a clamped-free beam are:

Atx:O: v=W=¢=v’=w’=0 2.5

Andatx=L: M,=M,=M,=V,=V,=0 2.6

where M, M, and M, are internal moments about x, y and z axes, respectively, and V,
and V; represent internal shear forces in y and z directions.

For uncoupled beam equations, shear forces and moments expressions are
reported in any solid mechanics textbook, but for coupled vibrations, shear forces and
moments are to be calculated considering the coupling terms. The internal forces and
moments at any point along the beam length are then calculated from following

equations [1]:

V,=—(EI,W +EI V") +Tw' + (Q%em(x+e,)pcos ) 27
V,==(EL,W' +EIV") +Tv' - (Q’em(x +¢,)¢sin 0) 2.8
M, =GJ¢' 2.9

M, =EI W' +EI V' 2.10

M, =EIV'+EI W 2.11
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The equations (2.1) to (2.3) and the boundary conditions (2.5) to (2.11) fully
define the dynamic behaviour of flexible linear rotating beams and are exploited in next
chapters to find the natural frequencies and mode shapes of the triply coupled beams

vibrations.

2.6. Equations of Motion for Dually Coupled Vibrations

As already stated, the triply coupled differential equations of beam vibrations
(2.1) to (2.3) and the boundary conditions (2.5) to (2.11) can be used to derive the

differential equations of motions for dually coupled vibrations of a beam.

2.6.1. Coupled Bending-Bending Vibrations

The coupled flap-wise and cord-wise bending vibrations of a rotating beam are

governed by the following differential equations:

(EI,W'+EI V") —(Tw')' - 0*mw=0 2.12

(ELV"+ EL,w)" = (IV) -0’ mv—-Q*mv =0 2.13

Obtained by setting @ to zero in equations (2.1) and (2.2). The boundary conditions at

free end, in this case, reduce to following form:

V, =—(EI,w"+EI V") +Tw' =0 214
V, =—(EI,w +EILV") +Tv' =0 2.15
M, =EIlw +EI V=0 2.16
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M,=EIlV'+EI[ W =0 2.17

One can see that the angular velocity of the beam, @, doesn’t have any contribution in
coupling terms and only appears in the expression for centrifugal force (see equation 2.9),
7, and the coupling between two in-plane and out-of-plane of rotation lateral
displacements is related to asymmetric term EI,,. Also, the eccentricity e disappears
when torsional displacement ¢ vanishes. It means that the eccentricity between centroid
and elastic center doesn’t affect the bending-bending coupled equations.

It is also to be noted that out-of-plane flap vibrations are only affected by
centrifugal effect (Tw’)’, whereas the in-plane displacement is related to the centripetal
term, —Q°mv, as well. The centrifugal term increases the beam stiffness in both
directions, while the centripetal term, due to the negative sign, decreases the stiffness in

in-plane direction and causes decrement in cord-wise mode frequencies.

2.6.2. Coupled Bending-Torsion Vibrations

The differential equations governing the coupled bending-torsion vibrations can

be extracted from the triply coupled general case by setting v = 0:

(EIL,W")" - (Iw') —[Qem(x + ¢, )pcos O] )18
—o’m(w+egcosf) =0 '

—(GJg") + Q*em(x + e, )W cos§ — w*emwcos &

2.19
+Q%m(x2, —x2,)pcos20 —w’mxip=0

where, in this case, the boundary conditions at free end are:

12



V., =—(EIW) +Tw' +(Qem(x +¢,)pcosf) = 0 2.20

M, =GJ§ =0 221

My =E1yw"=0 2.22

The coupling occurs because of non-coincident shear and mass axes (e #0) and
the beam rotating speed @. Even though the pre-twist angle 6 appears in coupling term,
but it doesn’t have direct contribution in these terms. In words, if 6 vanishes, the nature
of equations will not change.

In this chapter the differential equations of motion governing the triply and dually
coupled vibrations of rotating beams were presented. In Chapter 3, the Wittrick-Williams
root counting method, used to evaluate the natural frequencies of an eigenproblem, will
be presented. Then, in Chapter 4 and 5, the governing differential equations of motion
introduced in this chapter are solved, using the FEM and DFE methods, respectively, to

evaluate the natural frequencies and modes of rotating and non-rotating beams.

13



CHAPTER 3: SOLUTION OF EIGENPROBLEMS

3.1. Introduction

Many engineering problems, such as buckling and vibration analyses of flexible

structures, lead to one of the following equations:

[4]{x} = A[B){x} 3.1
[4){x} = A{x} 3.2
[A(A)]{x} =0 33

known as eigenvalue problems or simply eigenproblems. Here [A], [B] and [A(N)] are
nxn matrices; {x} is an n dimensional vector; {x} and A are eigenvector and eigenvalue,
respectively. When [4] and [B] are constant, the above equation is called a linear
eigenproblem (see (3.1) and (3.2)), whereas A-dependent components lead to a nonlinear
eigenproblem (3.3). In vibration analysis of flexible structures, the eigenvalues and
eigenvectors are equivalent to natural frequencies and mode shapes, respectively, where
A=w,

There exist several well-known iterative numerical algorithms established to find
the eigenvalues and eigenvectors of the linear eigenproblems. The approach introduced in
this chapter, developed by Wittrick and Williams [14, 15, 27], provides a powerful and
robust tool for, but is not limited to, nonlinear eigenproblems of form (3.3), where the
coefficient matrix [4(w)] is frequency dependent and other algorithms may skip some

natural frequencies.

14



3.2. VWittrick-Williams (W-W) Method

As already stated, both the DSM and DFE methods lead to a nonlinear
eigenproblem due to the fact that the approximation functions and the element stiffness
matrices are frequency dependent. In this case, the coefficient matrix in (3.3) is the
nonlinear frequency dependent dynamic stiffness matrix, [4(N)] = [K(w)]. The Wittrick-
Williams (W-W) root counting algorithm [14,15] can then be exploited to find all natural
frequencies lying below a trial frequency w". The advantage of W-W approach is that for
the periodic structures and systems composed of sub-structures, the natural frequencies of
sub-structures and poles of the system can also be calculated. Besides, the constrained
nodes and special boundary conditions which produce repeated frequencies can also be
studied [15].

3.2.1. Theory

For a flexible structure, there are two possible solutions pertaining to the equation

[Kn(@)]{un} = 0:
a) |[Ku(@)]| =0, where {u,} # 0 is one set of solution,
b) |[Ku(@)]| = «, where {u,} = 0 corresponds to the case where displacements

{u,} are ‘constrained nodes’ or nodes in the natural modes of vibrations.

Suppose that @ denotes the natural frequency of the structure. Then, it is known
that j, the number of natural frequencies of the system between zero and w*, as @

increases, is given by:

j=Jo+s(K@)D 3.4
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where [K(@*)] is the overall dynamic (frequency dependent) stiffness matrix evaluated at
o = o*, and s([K(®*)]) is the number of negative elements on the leading diagonal of
[K(w*)]* and [K(w*)]* is the upper triangular matrix obtained by applying the standard
Gauss elimination method to the [K(@)] with no column interchange. jy is the number of
natural frequencies of the structure still lying between @ = 0 and @ = @* when
displacement components to which [K(a@)] corresponds are all zero (in such a case, the
beam can still have natural frequencies when all its nodes are clamped, because the
formulation allows each individual (beam) element to have an infinite number of degrees

of freedom between nodes). Thus:

NE
Jo=D m 35

m=1
where j,, is the number of natural frequencies between @ = 0 and @ = @w* for an element

with its ends clamped, while the summation extends over all elements.

It can be shown [14] that j, for the case of coupled bending-bending-torsion

vibrations is calculated as:

jm=jt+jf,w+jf,v 3.6
where:
Ji = the largest integer < v/ 3.7
o .
.]f,w =1, —_2-[1+ (—1) Sgn(Df,w)] 3.8
iy = the largest integer < a,/7 3.9

16



1 ,.
Jrw =1, --2—[1+ (=1)" sgn(D,,)] 3.10
i, = the largest integer < a/7 3.11

Dy, and Dy, are the denominators of the element stiffness matrix for in-plane, v, and out-
of-plane, w, flexural displacements, respectively and @ and 7 are element frequency
dependent parameters [21].

Thus, by exploiting the equations (3.4) to (3.11), it is possible to converge on any
required natural frequencies, given the fact that the expressions for the dynamic stiffness

matrix and the clamped-clamped natural frequencies are known.

3.2.2. Application to the Beam Vibrations

A beam with uncoupled out-of-plane vibrations is used to demonstrate Wittrick-
Williams method. The equation of motion for a cantilever beam with out of plane flexural

vibrations is:

(EIL,w")' —a’mw=0 3.12

After applying the natural (force) boundary conditions, using the DFE or DSM

method [21], the final eigenproblem can be written as:

[K(@)]{u} =0 3.13

For a one-element beam model, the natural frequencies are obtained when the

determinant of stiffness matrix, [K(@)], vanishes. In other words, when the [K(@)]

17



determinant is plotted versus frequency (Figure 3.1), the intersections between the curve
and w-axis are the natural frequencies. It can be seen from Figure 3.1 that between the

second and third natural frequencies there exist two poles, where |[K(@)]]| =~ o=

30 10
" 'omega (rad/s)

Figure 3.1: The determinant of stiffness matrix versus frequency.

Investigation of the parameters s[K(w)] and jg,, shows that these numbers can
change independently. The variation of sign count of stiffness matrix, s[K(w)], for a beam

with one element is shown in Figure 3.2:
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