FUZZY DATABASE FOR MEDICAL DIAGNOSIS

by

Rehana Parvin
BSc, AIUB, Dhaka, Bangladesh, 2004

A thesis
presented to Ryerson University
in partial fulfilment of the
requirements for the degree of
Master of Science
in the Program of
Computer Science

Toronto, Ontario, Canada, 2014
©Rehana Parvin 2014
AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

REHANA PARVIN
FUZZY DATABASE FOR MEDICAL DIAGNOSIS

Rehana Parvin
MSc, Computer Science, Ryerson University, 2014

ABSTRACT
A challenge of working with traditional database systems with large amounts of data is that decision making requires numerous comparisons. Health-related database systems are examples of such databases, which contain millions of data entries and require fast data processing to examine related information to make complex decisions. In this thesis, a fuzzy database system is developed by integration of fuzzy inference system (FIS) and fuzzy schema design, and implementing it by SQL in three different health-care contexts: the assessments of heart disease, diabetes mellitus, and liver disorders. The fuzzy database system is implemented with the potential of having any form of data and tested with different types of data value, including crisp, linguistic, and null (i.e., missing) data. The developed system can explore crisp and linguistic data with loosely defined boundary conditions for decision-making. FIS and neural network-based solutions are implemented in MATLAB for the mentioned contexts for the comparison and validation with the dataset used in published works.
Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Abdolreza Abhari, for his enthusiastic support and excellent supervision. He has been extremely helpful and patient. Without his kind cooperation and ongoing support, completion of this proposal would not have been possible. He created the novel idea used in this research and directed all the system designs and software implementation. Any further development of this research results or use of the implemented software should be authorized by Dr. Abhari.

I would also like to thank the administrative assistants and technical staffs of the Department of Computer Science at Ryerson University for their cooperation and assistance.

My gratitude also goes to Dr. Hooman Tahayori post doctoral fellow in the Department of Computer Science at Ryerson University, family physician Dr. Mark Waxman, and physicians Dr. Brian Hanlon, Dr. Alykhan Jamal, and Dr. Anisur Rahman, as well as to other consultants who assisted with the developed system. I am also grateful to my friends in the distributed systems and multimedia processing lab (DSMP) who helped me whenever in need.

I dedicate this thesis to my family- my husband, my son and my parents for their ongoing support and encouragement in making my study period more enjoyable.
To my family for their kindness and encouragement.
Contents

Declaration ... ii
Abstract .. iii
Acknowledgments .. iv
Dedication ... v
Table of Contents .. vii
List of Abbreviations ... viii

1 Introduction.. 1
 1.1 Introduction .. 1
 1.2 Problem Statement .. 2
 1.3 Methodology ... 4
 1.4 Objectives .. 5
 1.5 Research Contributions .. 6
 1.6 Thesis Organization .. 7

2 Preliminaries and Related Works 9
 2.1 Traditional Database Systems and Data Boundary Problems 9
 2.2 Fuzzy Logic .. 11
 2.3 Membership Function .. 12
 2.4 Crisp and Fuzzy Sets .. 14
 2.5 Types of Fuzzy Sets ... 15
 2.6 Properties of Fuzzy Sets .. 16
 2.6.1 Operations on Fuzzy Sets .. 18
 2.7 Linguistic Variables and Linguistic Values 20
 2.7.1 Fuzzy IF-THEN Rules .. 20
 2.8 Fuzzy Inference System ... 21
 2.9 Related works .. 25
 2.10 Related Works of Fuzzy Inference System 27
 2.10.1 Fuzzy Inference System in General Application 27
 2.10.2 Related Works of Fuzzy Inference System in Medical Diagnostic Systems 28
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.11 Related Works of Implementing Fuzzy Concept and Schema Design of Traditional Database System</td>
<td>30</td>
</tr>
<tr>
<td>3 Methodology</td>
<td>35</td>
</tr>
<tr>
<td>3.1 Data Collection</td>
<td>35</td>
</tr>
<tr>
<td>3.2 Dataset</td>
<td>36</td>
</tr>
<tr>
<td>3.3 Fuzzy Database Design</td>
<td>37</td>
</tr>
<tr>
<td>3.3.1 Fuzzy Schema Design</td>
<td>38</td>
</tr>
<tr>
<td>3.3.2 FIS Design with Traditional Database System</td>
<td>43</td>
</tr>
<tr>
<td>3.3.3 Fuzzification</td>
<td>48</td>
</tr>
<tr>
<td>3.3.4 Rule Evaluation</td>
<td>54</td>
</tr>
<tr>
<td>3.3.5 Aggregation of Rules</td>
<td>56</td>
</tr>
<tr>
<td>3.3.6 Defuzzification</td>
<td>57</td>
</tr>
<tr>
<td>4 Results</td>
<td>60</td>
</tr>
<tr>
<td>4.1 Fuzzy Database Implementation</td>
<td>61</td>
</tr>
<tr>
<td>4.1.1 User Interface Design</td>
<td>61</td>
</tr>
<tr>
<td>4.2 Comparison Results of Fuzzy Database System for Different Data</td>
<td>63</td>
</tr>
<tr>
<td>4.3 System Validation by Implementing Fuzzy Inference System in MATLAB</td>
<td>65</td>
</tr>
<tr>
<td>4.4 Comparison of Prediction Capability of FIS With Another Heuristics Method</td>
<td>68</td>
</tr>
<tr>
<td>4.5 Discussion on Experiments</td>
<td>71</td>
</tr>
<tr>
<td>5 Conclusion</td>
<td>72</td>
</tr>
<tr>
<td>5.1 Future Work</td>
<td>75</td>
</tr>
<tr>
<td>Appendix A Data Collection, Explanation of Indicators, Fuzzy Rules, Relationship Model</td>
<td>77</td>
</tr>
<tr>
<td>A.1 Explanation of the indicators of Heart Disease</td>
<td>82</td>
</tr>
<tr>
<td>A.2 Explanation of the indicators of Diabetes Mellitus</td>
<td>85</td>
</tr>
<tr>
<td>A.3 Explanation of the indicators of Liver Disorders</td>
<td>87</td>
</tr>
<tr>
<td>Appendix B Membership Function Calculation</td>
<td>98</td>
</tr>
<tr>
<td>Appendix C Some Portion of SQL for FIS of the Developed System</td>
<td>109</td>
</tr>
</tbody>
</table>
List of Abbreviations

- ALP: Alkaine Phosphate
- BMI: Body Mass Index
- BP: Blood Pressure
- BS: Blood Sugar
- COG: Center of Gravity
- Cho: Cholesterol
- DM: Diabetes Mellitus
- DPF: Diabetes Pedigree Function
- ECG: Electrocardiography
- FOU: Footprint of Uncertainty
- FL: Fuzzy Logic
- FIS: Fuzzy Inference System
- Gammagt: Gamma Glut Amyl Tranpeptidise
List of Abbreviations

- **HB**: Heart Beat
- **INS**: Insulin
- **LD**: Liver Disorder
- **MF**: Membership Function
- **MCV**: Mean Corpuscular Volume
- **SQL**: Structural Query Language
Chapter 1

Introduction

1.1 Introduction

As a result of the rapid development of technology, data are becoming increasingly abundant. Large collections of data stored in a database system are usually of differing types and varying accuracy. Dealing with large collections of information (i.e., big data) in database management systems has become a serious problem for analysts in all fields, including the medical professions. In the medical field, it is necessary to have the right information to diagnose the condition properly, but sometimes the data are not exact and may occur as words rather than numbers (i.e., linguistic terms). In a traditional database system using conventional search methods, information retrieved in response to a query is absolute, either true or false. As a result, it is impossible to get any information if a query fails to satisfy the condition. The condition is specified for the solution to a set of differential situations in the query to retrieve the information from the database. Also, in
cases where decisions are based on several components (i.e., attributes used in the database), it is difficult to keep all the information if the searching strategy fails to satisfy the query conditions.

Again, a database system includes collections of tables for storing the data. In order to retrieve information, the tables may need to join on demand. This joining of tables in the database system may consume large amounts of time and resources.

Research of the storage, management, and retrieval of data continues to develop to meet the growing demands of improved accuracy and efficiency. Studies have shown that using a fuzzy capability with a database system can provide a more suitable database system for the user [1] [2] [3] [4].

Fuzzy logic and fuzzy set theory are used to support fuzzy capability in a database system. Medical diagnostic systems based on traditional database management must deal with the boundary conditions that are not properly defined, and data that may be crisp, linguistic, or a combination of both or even include null values. As a result, the integration of fuzzy capabilities for such database systems has become a topic of interest.

1.2 Problem Statement

In this thesis, the term “traditional database management system” refers to a common database system utilizing an SQL-like language for querying data. The term “Medical database systems” refers to the systems that need to operate on databases containing medical data. The use of a traditional database system for medical diagnostics creates a problem when decision-making is made with SQL-
like queries due to the inaccurate and heterogeneous data.

Traditional database search systems use AND, OR, NOT operators. Such operators are not ideal when applied to perception-based information (such as linguistic data), and complicating the processes of generating accurate diagnostics.

Perception-based data are usually expressed using linguistic terms, such as “young”, “middle aged”, “old” etc., where boundary conditions are not clearly defined; for example, a person who is 30 years old may be considered as a “young” or a “middle aged” person. Also, when null values appear in traditional database systems, it is difficult to provide information that will allow them to be processed. Perception-based data in a traditional database system requires queries with multiple conditions to quantify the linguistic ranges. This requires numerous comparisons to be made under different conditions to achieve the desired result. Such a system would be highly inefficient. However, in some cases, if the user defines the criteria to clarify retrieving data from perception-based data (for example, by stating that “29 years old” is “young”), there is a possibility of having small errors in data values (for example, the above definition could mean “29 years and 1 month old” is not “young”). Hence, in traditional database systems, if a query does not meet the condition, it is not possible to obtain accurate information; this is often what happens when perception-based data in database systems are used.

The current research advocates the use of fuzzy logic and fuzzy set theory by employing fuzzy inference system and fuzzy schema design, to resolve the inefficiency and inaccuracy that occur in medical database systems, processing perception-based data.
Chapter 1: Introduction

1.3 Methodology

This research objective is to develop an effective system to manage and retrieve data in medical database systems. Such systems are characterized by extensive data collections, loosely defined boundary conditions and the need for multiple comparisons. In the literature, two approaches are used to obtain a fuzzy capability in the database system. One is to create a fuzzy inference system using SQL in its current form to query crisp data reported in [5], and the other is to provide some extensions for SQL language reported in [6]. The fundamental differences between a fuzzy database and a traditional database to be how linguistic and null data are quantified.

In a fuzzy database system, there are two types of information. One has imprecise values, and the other has linguistic variables. In the case of imprecise values, a fuzzy database has some known approximate values, and data lie between those values. For example, the age of John maybe 27, 28 or 29, i.e., the age of John is between 27-29, and the exact age of John is unknown. In the case of linguistic variables, data are represented by linguistic terms such as tall, short.

This study developed a fuzzy database system by using the concepts of a fuzzy inference system and fuzzy schema design, and integrated them based on existing data available in the traditional database system.

In order to query the data with fuzzy capability, a common SQL-based database system, Microsoft Access 2007, was used. In this research, the same SQL logical operators are used to create the fuzzy rules for the FIS design. Range values were used to represent the linguistic variables. The developed fuzzy system and neural
network were implemented in MATLAB for comparison purposes. The system was validated with real data from the UCI machine learning datasets [7], [8], [9]; a data source commonly used by researchers for validation purposes. The fuzzy database system was developed to support the boundary conditions effectively, whether the data were numerical (i.e., crisp values), linguistic, a combination or null data type.

Scope: The main focus of the research completed for this thesis is to incorporate fuzzy logic in the database system by combining a fuzzy inference system and a fuzzy schema design. The system was developed to be capable of dealing with the data that already existed in a common SQL-based database system, such as Microsoft Access 2007. The scope of this research was limited to three medical applications: heart disease, diabetes mellitus, and liver disorders. Validation and accuracy was determined using UCI machine learning dataset, and the associated data range information was provided by [10] [11] [12].

1.4 Objectives

The objective of this study was to incorporate fuzzy logic and fuzzy set theory into a traditional database system. The adopted methodology was to develop a fuzzy database system to manage the boundary conditions efficiently when calculating a decision from heterogeneous data. The system can be used when the information in the existing database systems fail to satisfy the query conditions, where there is a possibility of getting information to some degree of precision. The goal of this system is much more beneficial than simply providing information.
Chapter 1: Introduction

The goal is to increase accuracy and efficiency. To enable medical database systems to interpret ambiguous information. The developed fuzzy database system should be able to obtain information when data are missing. Achieving these objectives included the following tasks:

- To prepare the range values from the data collected from the domain experts (i.e., physicians).
- To construct the formulation by using the range values to get the membership functions for all the three applications: heart disease, diabetes mellitus, and liver disorders.
- To develop a fuzzy database system by combining fuzzy inference system and fuzzy schema design for the diagnosis of heart disease, diabetes mellitus, and liver disorders by SQL, a standard used in SQL-based database system such as Microsoft Access.
- To query the data for the cases when the data are in the form of numbers, linguistic terms, a combination of numbers, null for all the three applications.
- To develop all the three applications using neural network and FIS in MATLAB to compare the prediction capability between them.

1.5 Research Contributions

This study focuses on designing a fuzzy database system using existing data provided by (source of medical data), assessable through an SQL-based traditional
Chapter 1: Introduction

database system in order to obtain more accurate diagnoses for specific medical conditions. The major contributions of this study are outlined as follows:

1. Developed a fuzzy database system by integrating a novel fuzzy inference system (FIS) and fuzzy schema design by SQL of common database systems that is able to provide diagnosis of a patient (i.e., decision-making) when a variety of data exists in various forms including numbers (crisp), linguistic, mixture of both, or null (missing data) for the three specific diseases: heart disease, diabetes mellitus and liver disorders.

2. Developed FIS and neural network-based designs for the three applications in MATLAB in order to make a comparison of the prediction capabilities between the two approaches, using real data reported in the literature.

1.6 Thesis Organization

The chapters of this thesis are presented as follows:

Chapter 2: This chapter starts with the introductory information related to this thesis which includes an examination of traditional database system, Structural Query Language (SQL), fuzzy logic, fuzzy inference system, schema design, and associated research.

Chapter 3: This chapter details the methodology for building the system, the data collection, dataset description, methodology of the developed system, steps involved in the system design, algorithms of FIS design, and input/output.

Chapter 4: This chapter describes the results of this study, the user interface design
Chapter 1: Introduction

for the heart disease application, diabetes mellitus, and liver disorders. Graphs of the results are presented at the end of the chapter.

Chapter 5: A conclusion of the thesis summarizes the research findings and provides guidelines for future directions.
Chapter 2

Preliminaries and Related Works

This chapter describes preliminary information including problems with traditional database systems with regards to boundary data, fuzzy set, fuzzy inference system, fuzzy database design, and concludes with a section for related works.

2.1 Traditional Database Systems and Data Boundary Problems

In this study, the traditional database refers to a common database system used for storing information. SQL like language is used for storing, adding, deleting and retrieving information through a database system.

SQL is a powerful tool used in traditional database systems. SQL plays a vital role querying crisp and precise information. In traditional database management systems data are based on boolean logic (i.e., absolute) and queries retrieving data depend on boolean conditions. Problems occur when users query information that
Chapter 2: Preliminaries and Related Works

exceed the boundary conditions of SQL, surpassing SQL’s querying ability. For example, in a traditional database of patients’ records, suppose we are tasked with identifying records of only the young patients (i.e., Patient age is between 19 and 25) who were discharged and paid more than $2000 (i.e., Discharged rate is Dis_rate above $2000). The searching strategy using traditional database system can be identified by the SQL query as the following:

```
Select * from DischargedPatients
Where Dis_rate > 2000 and
Age between 19 and 25;
```

In the above example, the discharged rate situation is not a problem; however, a complex problem is determining how the system defines a young patient. If the patient’s age is 25 years and 2 months, then reasonable to believe that the person is a young patient and should be selected from the DischargedPatients. But because of having absolute restrictions in the age boundary conditions, only patients age 19 and 25 are considered. A patient 25 and 2 months would be rejected.

Because Age is a perception-based, there are two issues that arise when querying for age. If 2 months are added to fix this query, the query will change, and consider the period between 19 and 25 years and 2 months as young. As a result, anyone whose age is 25 years and 2 months or less would be retrieved as a young patient. A problem arises when a user stores the patients information that exceed the boundary condition of the above query. For example, if a 26 years old patient is added to the system the query will not identify this patient who is 26 years old as a young person even though someone else may consider a 26 years old person
as a young patient. The other issue arises when there are linguistic values in the data. Then it is not possible to provide any information based on such values. In order to overcome these problems, fuzzy set theory can be applied to the database system. Using fuzzy sets in the database system provides the feasibility of having information in a range between true and false, which is measured by membership functions. It enables the consideration of boundary conditions and linguistic values in the database systems. In the following sections, the fundamentals of fuzzy theory are explained.

2.2 Fuzzy Logic

Fuzzy logic (FL) is a multi-valued logic that has been used to solve many complex challenges including clinical diagnostics. FL handles approximate values in place of fixed and precise values. Professor Lotfi A. Zadeh first introduced the terms “fuzzy sets” and “fuzzy logic” in the mid-1960’s [13] [14].

According to Zadeh, fuzzy logic is an addition of the classic logic. Classic logic is based on boolean logic, where the information is either true or false. In classic logic the membership of a component belonging to a set is represented by 0 if it does not belong to the set, and 1 if it is in the set, i.e. \(\{0, 1\} \). On the other hand, in fuzzy logic this set is extended to the interval of \([0, 1]\).
2.3 Membership Function

A membership function (MF) is a distribution that maps each and every point in the input space (i.e., universe of discourse which represents the set of the entities) to a membership value between 0 and 1. There are different types of membership functions of fuzzy set such as triangular membership function, trapezoidal membership function, Gaussian membership function, and etc. [15]. The types of MF depend on the concept that is being represented, and the context of it’s use. This study used triangular and trapezoidal membership functions.

In triangular membership function, the curve is a vector function \(x \) to be determined by three scalars \(a, b, \) and \(c \). In the following figure (2.1), a triangular membership function is illustrated [15].

![Triangular Membership Function](image)

Figure 2.1: Triangular Membership Function.

In trapezoidal membership function, the curve is a vector function \(x \), determined by four scalars \(a, b, c, \) and \(d \). In the following figure (2.2), a trapezoidal membership function is illustrated [15], [16].
Figure 2.2: Trapezoidal Membership Function.

Membership function can be the combination of both of them. For example, in the following figure (2.3), the triangular and the trapezoidal membership functions (MF) are illustrated:

Figure 2.3: A Basic fuzzy Set of Triangular and Trapezoidal Membership Function.

However, Gaussian, Sigmoid and other types of linear functions can also be applied to characterize the fuzzy sets. Non-linear functions can also be used but they will cause additional computational complexity to the algorithm [17].
Chapter 2: Preliminaries and Related Works

2.4 Crisp and Fuzzy Sets

Let A be a set of a universe of discourse X then for crisp set:

\[
f_A(x) = \begin{cases}
1, & x \in A \\
0, & \text{Otherwise}
\end{cases}
\]

(2.1)

\[f_A(x) : \rightarrow \{0, 1\},\]

(2.2)

Therefore, if x is in the set of A, for any component x is in the universe of discourse X, membership function $f_A(x)$ is equal to 1 for crisp set. Conversely, if x is not a member of set A, then $f_A(x)$ is equal to 0. On the other hand, the components of the fuzzy sets belong to a subordinate fuzzy set with a specific degree of membership [13]. For any component x of universe X, if x belongs to set A, membership function $\mu_A(x)$ is equal to the degree to which x belongs to the set. If x is not a member of set A, then the membership function $\mu_A(x)$ is equal to zero. The membership function $\mu_A(x)$ of an element x for a fuzzy set A is expressed as follows:

\[
\mu_A(x) = \begin{cases}
1, & \text{if } x \text{ is completely in } A \\
0, & \text{if } x \text{ is not in } A \\
0 < \mu_A(x) < 1, & \text{if } x \text{ is partially in } A
\end{cases}
\]

(2.3)

The elements in fuzzy sets can have an inclusive degree of membership that ranges from 0 to 1.
2.5 Types of Fuzzy Sets

There are mainly two types of fuzzy sets: type-1 fuzzy sets (T1FS) and type-2 fuzzy sets (T2FS). T1FS were first introduced by L. A. Zadeh in 1965 \cite{13}. However, type-1 fuzzy sets failed to model uncertainty properly. Uncertainty indicates the degree of truth of the value in an attribute. For example, the age of John is 36 right now, might be 80% true. The issues with T1FS led to the introduction of T2FS. In order to model uncertainty and imprecision in a superior way, type-2 fuzzy set was initially presented by Lotfi Zadeh, and the concepts were presented by Mendel and Liang \cite{18}. In case of T2FS, the degree of membership is type-1 fuzzy set. The following example will explain more about the idea of type-1 and type-2 fuzzy set:

![Temperature Diagram](image)

Figure 2.4: Type-1 Fuzzy Set.

In figure (2.4), temperature $x = 27^\circ C$ is hot to the degree of membership 0.4 (i.e. $\mu_{Temperature}(27) = 0.4$). In this example, there is vagueness but no uncertainty. In vagueness, the elements are vague and represented by linguistic terms (which is hot in this example). To model uncertainty, it is required to know the temperature
is hot to a degree about 0.4. In order to model uncertainty properly, type-2 fuzzy set (T2FS) is introduced. The example of type-1 fuzzy set shown in figure (2.4) can be replaced by the following figure (2.5) using type-2 fuzzy set.

![Type-2 Fuzzy Set](image)

Figure 2.5: Type-2 Fuzzy Set.

Figure (2.5) shows that for type-2 fuzzy set, the membership function is an interval i.e. type-1 fuzzy set. For the above example of temperature \(x = 27^\circ C \), the membership function for \(x = 27^\circ C \) is \([0.4, 1]\).

In type-2 fuzzy set, the membership function is three dimensional. The third dimension is called the footprint of uncertainty (FOU) and it is the membership value at each point of the two dimensional domain. FOU is represented by lower bound and upper bound membership function, both of which are type-1 fuzzy set. For the above example, \(x = 27^\circ C \) has lower MF 0.4 and upper MF 1.

2.6 Properties of Fuzzy Sets

The properties of fuzzy sets and crisp sets are similar [16]. Classical or crisp sets are a unique case of fuzzy sets in which membership values are a subset of
the interval [0, 1]. The following rules, which are common in crisp set theory, also apply to fuzzy set theory. Here, A, B, C represents three random fuzzy sets \cite{19}\cite{16}.

Commutatively:

$$A \cup B = B \cup A$$

$$B \cap A = A \cap B$$

Associativity:

$$A \cup (B \cup A) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributivity:

$$A \cup (B \cup C) = (A \cup B) \cap (A \cup C)$$

Indempotency:

$$A \cup A = A$$

$$A \cap A = A$$

The union and intersection between the same set returns the same result.

Identity:

$$A \cup \phi = A$$

$$A \cup X = A$$

$$A \cap \phi = \phi$$

$$A \cap X = X$$

Here, ϕ indicates the null set and X indicates the universal set.
Chapter 2: Preliminaries and Related Works

Transitivity:

\[A \subseteq B \subseteq C \quad \text{then} \quad A \subseteq C \]

Here, A, B and C have invariant reflexive symmetric relations i.e. if A is related to B and B is related to C then A is also related to C.

Reflexity of Complementation:

\[(A^c)^c = A \]

De Morgan’s Laws:

\[(A \cup B)^c = A^c \cap B^c \]
\[(A \cap B)^c = A^c \cup B^c \]

2.6.1 Operations on Fuzzy Sets

There are mainly three operations on fuzzy sets, which are complement, intersection and union. Let \(A \) and \(B \) be two fuzzy sets defined on the universe of discourse \(X \) to the interval \([0,1]\). A fuzzy set \(A \) is defined by its membership function \(\mu(A) \) and for the fuzzy set \(B \), which is defined by its membership function \(\mu(B) \) over \(X \). The function-theoretical operations of union, intersection and complements are defined as follows:

Union:

\[\mu_{A \cup B}(x) = \mu_A(x) \vee \mu_B(x) = \max(\mu_A(x), \mu_B(x)) \]
Chapter 2: Preliminaries and Related Works

Intersection:

\[\mu_{A \cap B}(x) = \mu_A(x) \land \mu_B(x) = \min(\mu_A(x), \mu_B(x)) \]

Complement:

\[\mu_{\text{not} A}(x) = 1 - \mu_A(x) \]

The associativity and commutativity of minimum and maximum functions are defined by the following [19]:

\[\max(x, \max(y, z)) = \max(\max(x, y), z) \]
\[\min(x, \min(y, z)) = \min(\min(x, y), z) \]

Figure 2.6: Fuzzy Sets Operations [16]

Figure (2.6) shows the operations of fuzzy sets i.e., union, intersection and complement. Any fuzzy set \(A \) defined on the universe \(X \) is a subset of the universe. Also, by definition the null set has membership 0 and \(x \) in \(X \) has membership 1. Note that the null set and the whole set are not fuzzy sets.
2.7 Linguistic Variables and Linguistic Values

A linguistic variable is a fuzzy variable [20]. In mathematics, variables deal with numerical values, whereas in fuzzy logic applications, non-numeric linguistic variables are usually used to assist the progress of the expression of rules and facts. In linguistic variables, the values come from natural language or artificial language such as words or sentences [21]. For example, ”Age is Young” indicates the linguistic variable “Age” accepts “Young” which is linguistic value.

2.7.1 Fuzzy IF-THEN Rules

The rules are the heart of the fuzzy inference system. After defining the linguistic variables and values, the rules of the fuzzy system can be formulated. The rules are used to map fuzzy inputs to fuzzy outputs.

Fuzzy rules have three parts: antecedent, proposition and consequence(s). One antecedent may have more than one of the (AND) or (OR) operators. The fuzzy IF-THEN rule looks like the following:

Rule: 1 IF \(x \) is \(A_1 \) OR \(y \) is \(B_1 \) THEN \(z \) is \(C_1 \).

Rule: 2 IF \(x \) is \(A_2 \) AND \(y \) is \(B_2 \) THEN \(z \) is \(C_2 \).

Rule: 3 IF \(x \) is \(A_3 \) THEN \(z \) is \(C_3 \).

Where \(A, B \) and \(C \) are the linguistic values and \(x, y, \) and \(z \) are the linguistic variables.
2.8 Fuzzy Inference System

A fuzzy inference system (FIS) uses fuzzy set theory in order to map input to output. All informations are involved in the FIS process, i.e. membership functions, logical operators and IF-THEN rules. A sample FIS for diagnosis of hypothyroidism that includes four functions illustrated in figure (2.7).

![FIS Structure](image)

Figure 2.7: FIS Structure [22]

Two types of FIS, the Mamdani [20] and the Sugeno [23], have been successfully used in many applications. Data classification, decision analysis, expert systems can be mentioned as an example of the FIS applications.

This thesis used the Mamdani inference method. It is the most commonly used fuzzy methodology for its simple structure of “min-max” or “AND-OR” operations. Mamdani method was proposed by Professor Ebrahim Mamdani in 1975 at the University of London [20]. The Mamdani fuzzy inference process includes four steps: fuzzification; rule evaluation; aggregate output(s); and defuzzification which
are described below [24] [25]:

Step 1: Fuzzification

In fuzzification process the crisp input values are transformed into the grades of membership function (MF) for linguistic values of fuzzy sets. The membership function provides a grade for each linguistic value. An example of fuzzification is shown in the following figure (2.8).

![Example of Fuzzification](image)

Figure 2.8: Example of Fuzzification

In the above figure (2.8), \(\mu(Age = young) \), the membership function \(A1=0.7 \).

Step 2: Rule Evaluation

After successfully defining the input and output variables, and the corresponding MFs, it is necessary to design the rule-base of the fuzzy knowledge-base. The rule-base of FIS design is composed of IF < antecedents > THEN < conclusion > rules. These rules are then transformed from an input to an output, based on MFs that inform the projected outcomes. The total number of rules depend on the total number of linguistic variables and MFs. In Mamdani, the AND operator is applied.
on each rule for rule evaluation. An example of rule evaluation is shown in figure (2.9).

![Figure 2.9: Example of Rule Evaluation](image)

Step 3: Aggregate output(s)

After evaluating all the rules, the rules need to be bundle together in a particular approach to make a decision. Aggregation method is used to bundle the output fuzzy set after the evaluation of the rules. In Mamdani, the OR operator is used to aggregate the output fuzzy sets. After aggregation, the final output is a single fuzzy set. The following figure (2.10) shows an example of rule evaluation.

![Figure 2.10: Example of Rule Aggregation](image)
Step 4: Defuzzification

Defuzzification is placed after all others of the fuzzy inference process. This method is used to generate a crisp number from the single output fuzzy set that is found from aggregating the rules in Step 3. Several methods are used for defuzzification, such as centroid of area (also known as center of gravity or COG) [24], bisector of area (Bisector) [24], mean value of maximum (MOM) [24], smallest (absolute) value of maximum (SOM) [24] and lastly, largest (absolute) value of maximum (LOM) [24]. The centroid method is the most popular defuzzification method [24]. Centroid defuzzification method is used to determine the point which indicates the center of gravity (COG) of the fuzzy set. The following formula is used to calculate the COG [24] [25]:

\[COG = \frac{\int \mu_A(x) \times x \, dx}{\int \mu_A(x) \, dx} \]

(2.4)

Where, \(\int \) denotes an algebraic integration and \(\mu_A(x) \) is the value of membership function of set \(A \). The following figure (2.11) shows an example of defuzzification.

![Figure 2.11: Example of Defuzzification](image)

In case of FIS design, all of the above mentioned steps need to be considered.
Chapter 2: Preliminaries and Related Works

The elements of the conceptual schema include tables, views, constraints, domains definition, and other constructs which describe the schema.

Now, for the definition of fuzzy database system, it can be said as the database system that use fuzzy logic to support vague, imprecise and uncertain information. On other words, the database with fuzzy capabilities is called fuzzy database [4] [15].

2.9 Related works

Relational Model and Extensions of SQL to Support Fuzziness

This section describes various database models such as fuzzy relational databases and previous works related to the extensions of SQL in traditional database systems to support fuzziness.

Fuzzy relational database model incorporates imperfect information and complex objects by relaxing first normal form and authorizing attributes to be multivalued. In relational database system, it is necessary for the attributes to have atomic value, and each attribute value needs to contain only a single value from the domain. However, in order to support fuzziness, which allows the attributes to be multivalued, the criteria of first normal form in the relational database model needs to be removed. In this aspect, several non first-normal-forms relational databases was introduced.

In [26] an extension of fuzzy relational database model was developed based on similarity. This model was replaced by general proximity relation in [27]. The general proximity relation provides the degree of closeness between the elements.
of a scalar domain based on the properties of reflexivity and symmetry (fuzzy set properties). The proximity relation was extended in [28] by higher characterization of the proximity relation.

There are several extensions to object oriented database models to support fuzziness in database management system. In [29] the FOOD model was introduced based on similarity. Similarity indicates the likeness between the tuple values listed in the table. The relational database systems have one or more relations in the format of two-dimensions (i.e., row and column). The row indicates the tuple and the column indicates the domain of the corresponding field. The similarity is measured by the value between 0 and 1. For example, if black and blue color are compared, when the tuple value is black and the column value is also black, the similarity of black/black is 1 because black and black are exactly similar. On the other hand, if the tuple value is blue and the column value is black, then the similarity may be 0.8 because black and blue are not exactly matched.

Existing extensions of SQL to support fuzziness in databases include FQUERY [30], ISKREOT [31], FSQL [32], SQLf [6] and SOFTSQL [33]. Of these, SQLf [6] is the most well-known one because it provides extended SQL statements by advocating the use of fuzzy predicates, and also supports the features of SQL:1999. A fuzzy predicate is the same as the fuzzy sets, and expresses the degree of the arguments that fit with the predicate. For example, if the height of Joe is 6 feet, then the fuzzy predicate “tall” is satisfied with a degree of 0.85 (i.e. $\mu_{\text{Height}} = 0.85$), which indicates the membership degree to the fuzzy set of tall people. Thus, SQLf allows users to write flexible query by using linguistic terms. Figure (2.12) shows
the fuzzy SQL execution.

![Fuzzy SQL Execution](image)

Figure 2.12: Fuzzy SQL Execution

2.10 Related Works of Fuzzy Inference System

2.10.1 Fuzzy Inference System in General Application

In this section, a simple fuzzy inference system for hotel advisory system (HAS) is described. Nagi et al [5] developed a fuzzy expert system for hotel selection named hotel advisory system (HAS). The system is divided into three modules. The modules are fuzzy hotel search module, hotel detail information, and hotel virtual visit module. Each module is used for a specific task. A user interface was designed for the user to enter the data and returned the information to the user. The system used fuzzy inference system to provide linguistic terms such as cheap, moderate, expensive for hotel price, and the fuzzy rules of the system were used to find the cost of the hotel stay. This fuzzy expert system is more convenient and easier for the user to choose the hotel based on their demand such as cheaper hotel, expensive hotel. The system was tested by the potential users and hotel experts.
It can be used to improve the operations by reducing the cost of enquiries, and providing quick information about the hotel search.

2.10.2 Related Works of Fuzzy Inference System in Medical Diagnostic Systems

This section examines the literature relating to the FIS used to develop diagnosis systems.

There are many published papers where FIS has been used to develop different applications, most of them are based on a fuzzy inference engine using the MATLAB toolbox. However, many of these relate to the diagnosis of various diseases.

Adeli et al. [10] proposed an expert system for the heart disease diagnosis using fuzzy logic. In this paper, the crisp value was fuzzified in order to get fuzzy values. Using those fuzzy values, the fuzzy rules were prepared. The expert system used those fuzzy values and fuzzy rules to obtain the output fuzzy set. The fuzzy output was then defuzzified to get a single output, which is a crisp value. This crisp value indicates the stage of heart disease.

Durai et al. [35] designed a lung cancer diagnosis using fuzzy rule based inference system. In this system, the dataset was prepared by consulting the domain expert. The data includes symptoms, stages and treatment facilities that can be used to diagnose lung cancer efficiently.

Soni et al. [36] designed what they called an “Intelligent and Effective Heart Disease Prediction System using weighted associative classifiers”. They implemented the system using Java as front end and MS Access as the back end tool.
case of prediction the authors considered two cases: people with heart disease and people with no heart disease.

Neshat et al. \[11\] developed a diagnosis system for liver disorders using a fuzzy expert system in MATLAB. In their developed system, they considered two cases to diagnose liver disorders: people with a healthy liver, and people with an unhealthy liver.

Kadhim et al. \[37\] implemented a back pain diagnosis method using a fuzzy expert system. In their system, a decision tree is created for sequence of the decision. In the developed system, the fuzzy rules were prepared by the experts.

Kalpana et al. \[12\] developed a diabetes diagnosis system using fuzzy assessment methodology in MATLAB. The system is used to diagnose the diabetes of young people aged between 26 and 30. They considered two cases in diagnosing diabetes, which were young people with diabetes and young people with no diabetes.

The paper presented by R.Parvin and Abhari \[38\], and published by Medical Processes Modeling and Simulation related conference provides the foundation of the framework proposed by this study. The experiments performed by R. Parvin and Abhari smooth the path for this study.

This research follows the hotel FIS in \[5\] to implement the fuzzy inference system in SQL to provide the user a diagnosis result same as the hotel advisory system provides the hotel information based on the rate of the hotel. This study also used the concepts presented in Adeli et al. \[10\] for heart disease application, Kalpana et al. \[12\] for diabetes mellitus, and Neshat et al. \[11\] for liver disorders in order to
select the datasets, inputs, outputs, fuzzy rules, and to develop the fuzzy inference system in MATLAB for validation purpose of the applications. The inputs and output (i.e., data) of fuzzy inference system are the attributes that are related to the problems to solve by the fuzzy inference system. For example, for the fuzzy inference system developed in [10], [12], and [11] used the indicators (such as cholesterol for heart disease) that are responsible in developing the disease. The sensitivity of selecting number of inputs was done by implementing the heart disease application in MATLAB once with the same number of inputs, output, and fuzzy rules used in [10] and once again with the number of inputs provided in the dataset. The results obtained from the both was compared to observe the sensitivity of selecting the number of inputs. The fuzzy inference system presented in [10], [11], and [12] was developed in MATLAB.

This research used Microsoft Access 2007 to implement the system and extended the work adding other features of database design such as schema, null values.

2.11 Related Works of Implementing Fuzzy Concept and Schema Design of Traditional Database System

This section presents the related work of implementing fuzzy concept in schema design of the database system.

N. Mallikharjuna Rao et al. [34] designed a mobile database model using a fuzzy database. The idea of using fuzzy database in retrieving information from
a mobile database is to reduce the time complexity in querying the data as well as to provide fuzzy query in natural language to retrieve the information according to the user demands. In case of regular database system, some of the schema designs for the mobile database were subscriber profile database, mobile switching center database, visitor location register database, home location register database, equipment register database, and authentication register database. These schema designs were then changed into fuzzy schema design by defining fuzzy sets for some of the attributes. For example, the subscriber schema design in relational database system has the attributes subscriber name, subscriber address, photo attachment, SIM number, HLR (home location register) address, and Location area (which indicates the movement of the subscriber from one place to another place).

In the case of fuzzy database design for the same subscriber schema design, only for the HLR and location area were defined with fuzzy sets to provide the flexibility to the subscriber to select any address from the fuzzy sets. In the same way, some of the other attributes in the mentioned schema designs of mobile database were defined with the fuzzy sets to convert the relational database system with the fuzzy database system. The concept of using fuzzy capability to the mobile database would help to retrieve information efficiently from the heavy load of data and inserted new information in the centralized database system.

Sergaki et al. [39] developed a fuzzy database system for the maintenance of planning in a power system. The main challenges in maintaining power system are the size and complexity of power plants. In such cases where the components are complex, classification of the objects can be used to make the components simple.
Chapter 2: Preliminaries and Related Works

In the power planning system the output is operational condition. By using classification, operational conditions can be divided into the fuzzy sets of light, heavy, normal, and emergency. The system used three mechanisms named classification, composition, and generalization to develop fuzzy relational database system for the power maintenance planning of the power system. The schema designs for the planning system were user input, labels, power plant equipment, data types, criteria-1, and criteria. Each schema was designed to store different information. For example, the datatype schema consisted of two attributes named input1 and input2. When the data were interval (fuzzy data) then both of the attributes were used to store the data. In other cases, only input1 attribute was used to represent the data. The userinput schema design was used for the interface design to get the input from the user. The classes (i.e. classifications of inputs) were related to each other by three relationships aggregation, inheritance, and association. The linguistic terms used in developing the fuzzy relational database system for the power plant provides more flexibility in handling and evaluating the fuzzy information.

The idea of using classification of the inputs presented in this paper (similar to the linguistic terms used in this research) is implemented in the fuzzy schema design of this system. To develop a fuzzy relational database system, Sergaki et al. [39] used Microsoft Access.

In [40] a study of using fuzzy logic in database is described. A fuzzy approach is used in searching of the used cars from Czech Republic. For example, the schema design for searching a specific car model was id, price, year, km, engine body type. The searching option for a specific car model using different criteria was compared.
For example, in traditional database system, the car was searched by combining different criteria such as price, km, and both of them (price and km). Also, the same search was done using the range values (fuzzy logic) in price and km. The searching results obtained from the traditional database system and fuzzy database system showed that fuzzy database can offer users the best searching options with a full overview. The concept of using range values (fuzzy logic) was used in the fuzzy schema design of this system. Using fuzzy logic in the schema design of this system will allow the user to search for a diagnosis using the linguistic terms (e.g. Age = young).

In [41] a test database was used to compare the performance of traditional and fuzzy database. The fuzzy schema design for the account of a banking database system was considered which contains information of account number, branch name and balance. In the case of traditional database all the attributes of the account were crisp. For fuzzy database, the only fuzzy attribute was balance. The fuzzy set for balance had three linguistic terms “High”, “Moderate”, and “low”. Each linguistic term has the membership function. The performance of a query depends on the data structure and database size which may have millions of data and requires considerable time to find a precise record from the database. Since database size is increasing day by day, so it is necessary to decrease the time complexity in retrieving information to make a database more convenient. A binary search tree algorithm was used to compare the query cost over a traditional database system and a fuzzy database system. At first, the account information was retrieved by using a traditional database system. Then the fuzzy query was used to retrieve the
same information of the same account. The experimental results showed that the fuzzy query retrieve information more efficiently compared to the classical query.

In [42] the fuzzy schema design for customer relationships uses fuzzy classification query language as described in the paper. In this system, the combination of fuzzy logic with relational database system are used. Classifying the data into fuzzy data is helpful to process the containing human words. The concepts of classifying the data in fuzzy data presented in this paper is used in this research in order to implement the fuzzy schema design.

Chapter Summary:

In this chapter, preliminary concepts and related works are introduced. The related works were described in three different categories. Firstly, different relational database models and extension of SQL to support fuzziness were described. A sample of general FIS was used for general application such as hotel selection. Related works of fuzzy inference system in medical diagnosis were described. Related works of fuzzy database model using a traditional database system along with a related work for the fuzzy schema design are provided. The next chapter, addresses the methodologies used for the research activities.
Chapter 3

Methodology

This chapter describes the methodology used in developing the fuzzy database system, which includes fuzzy inference system, fuzzy database schema design, and an integration of both by Microsoft Access.

3.1 Data Collection

There are six primary methods to elicit knowledge from people for the construction of a MF. The methods are polling, interval estimation, direct rating, reverse rating, membership exemplification and pairwise comparison [43]. This research used a direct rating method because it was the most direct means of collecting data for constructing a membership function. In this method, the data (subject) are presented in a series of data (objects) to the domain experts and asked to rate the membership function for each. In order to construct a membership function, the responses taken from several physicians were aggregated. The lowest and
highest value were considered to make the ranges for membership function calculation. The lowest is used as the minimum and highest as the maximum values. All collected data would fall within the range, removing any chance of losing data. The data collections for heart disease, diabetes mellitus, and liver disorders are provided in Appendix A, table A.1, A.2, A.3, A.4 and A.5.

3.2 Dataset

In order to compare and validate the findings, the system was tested on the most widely used heart dataset [7], liver disorders dataset [9], and Pima Indian diabetes dataset [8] from UCI machine learning dataset available for the researchers.

In heart data set, there are 303 records and 13 attributes. All of them were used in this study. Adeli et al. [10] used 11 attributes from heart disease dataset for building membership functions. In liver disorders dataset, there are 368 records and 8 attributes. This research used all of them. Neshat et al. [11] also uses these attributes from liver disorders dataset. In diabetes dataset, there are 768 records and 8 attributes. This study continued with using all of them. M.Kalpana et al. [12] used 6 attributes from diabetes dataset. The attributes selected for a specific disease are also called indicators interchangeably. The indicators of a disease are the main contributors in developing that disease. This research used all of the attributes to be able to compare the developed fuzzy database system with the original dataset results.
3.3 Fuzzy Database Design

In this research, a fuzzy database system for medical diagnosis was designed, which is able to deal with a variety of data as follows:

- Data available in traditional database system, where all the data are crisp.
- Data that are in linguistic terms.
- Data that are a combination (mixture) of both.

In all of the above cases, it is possible to have null values. Null values represents missing data. This study also considered the cases of having null. In FIS design, the data were not defined as fuzzy initially. Then it was linked to a procedure to be able to use with fuzzy data. When there is no accurate data, the fuzzy database schema design will be able to retrieve information using linguistic terms. In cases when some data are crisp and some linguistic, the combination of the FIS and fuzzy schema design are able to provide information. While designing the system, the cases of having null values were also considered.
Figure 3.1: Architecture of Schema Design for Database Application.

In the above figure (3.1) shows the general architecture for schema design of database system. In the next two sections, the methodology of the developed system will be provided. In the first section, the fuzzy schema design is provided, the next section is about the information of the FIS design with examples, and combination of FIS and fuzzy schema design.

3.3.1 Fuzzy Schema Design

In this research, the fuzzy schema was designed and integrated with the developed fuzzy inference system described in section 3.3.2, to deal with the data used in regular conversation i.e., data in linguistic terms, and a mixture of both (crisp and linguistic terms). For circumstances when there is no accurate data, then the linguistic terms associated with the membership function will help to retrieve information using this fuzzy schema design. For example, if a patient doesn’t remember the exact value of his blood pressure but he knows that he has a high
blood pressure, the membership function associated with the linguistic term “high blood pressure” will be able to retrieve the data for the high blood pressure.

In the case of fuzzy schema design, this study considered the same fuzzy sets for each indicator and output used in FIS, such as the indicator “age”. The fuzzy sets for age are young, medium, old, and very old. The fuzzy schema design for the heart disease application is shown in figure (3.2). The application uses Heart Disease, the entities for Heart Disease are PID (Patient ID), gender, age, chest pain, cholesterol, blood pressure, blood sugar, maximum heart rate, ECG, exercise, old peak, thallium, coarctation, and slope.

![Figure 3.2: Fuzzy Schema Design for Heart Disease Attributes.](image)

The fuzzy schema design for diabetes mellitus is shown in figure (3.3). It is named Diabetes Mellitus, the entities for Diabetes Mellitus are PID (patient id), number of pregnancy, blood pressure, glucose, skin fold, INS, BMI, DPF, and Age.
In addition liver disorders, fuzzy schema design uses *Liver Disorders* shown in figure (3.4). The entities for *Liver Disorders* are PID (Patient ID), MCV, Alp, SGPT, SGOT, Gam, and drink.

In conceptual schema design of the system that is called fuzzy schema, each entity is associated with the same linguistic terms used in FIS design. The linguistic terms in fuzzy database system is associated with a degree of membership function [44]. This study used the same membership function from the FIS design for the
fuzzy schema to use the linguistic terms (fuzzy sets). Therefore, the designed fuzzy schema is able to handle all types of data: crisp, linguistic, mixture, and null. For example, a sample query for heart disease application from a database of 10 patient’s records can be:

find all the young patients with high cholesterol who have a severe heart disease condition,

which can be translated into the following SQL command in order to retrieve the information:

```
Select PID, Age, Cholesterol, Diagnosis
from HeartDisease
Where (( Age = "young") And (Cholesterol = "High")
And (Diagnosis = "Severe"));
```

The following information is shown in table (3.1) in return of the above query.

<table>
<thead>
<tr>
<th>PID</th>
<th>Age</th>
<th>Cholesterol</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Young</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>6</td>
<td>Young</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>7</td>
<td>Young</td>
<td>High</td>
<td>Severe</td>
</tr>
</tbody>
</table>

The above retrieved information shows that there are three patients out of 10 records satisfy the query conditions. The PID indicates the patient’s identification number.

In order to retrieve information in both crisp and linguistic terms, the above mentioned query can be written in the following way, which is similar to human natural
find all the patients whose age are 29 and have high cholesterol level with a Severe heart disease condition, which can be translated to the following SQL command in order to retrieve the information.

Select PID, Age, Cholesterol, Diagnosis

form HeartDisease

Where ((Age= 29) And (Cholesterol= 'High')
And (Diagnosis = 'Severe'));

Table 3.2: Result of the Query

<table>
<thead>
<tr>
<th>PID</th>
<th>Age</th>
<th>Cholesterol</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>29</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>6</td>
<td>29</td>
<td>High</td>
<td>Severe</td>
</tr>
</tbody>
</table>

Table (3.2) shows that there are two patients out of 10 records satisfy the query conditions. Note that, since age is declared as crisp, the above retrieved information show the variation of defining age as crisp and linguistic term. Here, patient number 7 does not satisfy the query condition of age = 29. As a result that patient 7 (i.e., PID= 7) is discarded while retrieving the information based on the query.

The following section will describe the fuzzy inference system developed in this research.
3.3.2 FIS Design with Traditional Database System

In order to develop fuzzy database system, initially a fuzzy inference system with traditional database system is developed, which way able to deal with the data available in the traditional database system, where all the data are crisp, then fuzzy schema described in previous section with membership function calculation for linguistic terms, it was integrated. Here, the algorithm of FIS design for traditional database are explained.

In this study, three different applications, which are heart disease, diabetes mellitus, and liver disorders are developed. As described in chapter 2, FIS structure consists of four steps: fuzzification, rule evaluation, aggregation, and defuzzification. This study followed Mamdani method to develop the system. The FIS design for the above mentioned three medical applications were developed using an SQL-based traditional database system. The membership functions of the inputs, the fuzzy rules, the aggregating rules, and the defuzzification were generated using the SQL. The parts of the SQL design and snapshot of the SQL are provided in Appendix C.

In order to develop the FIS design the following steps were followed:

- Identify the indicators of each disease and define the fuzzy sets for each indicator.

- Prepare the range value for each of the indicator.

- Construct the equation using the range value.

- Define membership function for the fuzzy sets using the equation.
Chapter 3: Methodology

- Generate the appropriate membership function by taking maximum from the fuzzy sets of each indicator.
- Construct fuzzy rules for each disease.
- Generate fuzzy inference.
- Apply defuzzification.
- Get the diagnosis.

![Architecture of Fuzzy Inference System for Diagnostic Application.](image)

Figure 3.5: Architecture of Fuzzy Inference System for Diagnostic Application.

The algorithm used together with the above mentioned steps for each disease in developing FIS is provided in the next page.

In the algorithm (Algorithm 1), the \texttt{getmembershipfunctionforfuzzyset} is used to generate the membership function of the input. The \texttt{maximum} function shown in the algorithm is used to get the best matched membership of the fuzzy set. The
Algorithm 1 Algorithm for Inclusion of Fuzzy Inference System in SQL

Require: Crisp Value for Input.

begin

for each input do

if crisp value ≥ range values // check the range of the input

A = GetMembershipFunctionForFuzzySet (Input) //Generating the membership function for the fuzzy sets of the inputs.

else if crisp value ≤ range values

B = GetMembershipFunctionForFuzzySet (Input) // Generating the membership function for the fuzzy sets of the inputs.

end if

end else if

end for

for each input fuzzy set

Linguisticterm = Maximum(membershipfunctionfuzzysets) // Generate Linguistic variable based on Maximum (The applications are developed using Maximum concept of fuzzy logic)

End for

for each Linguistic term

C = GetRelatedRule // Generate Rules

end for

End for
Algorithm for Inclusion of Fuzzy Inference System in SQL (Continued)

for each Rules

\[D = \text{MembershipFunctionofInput} \times \text{MembershipofOutputfuzzyset} \] // Calculate Rule strength

end for

\[E = \text{Fuzzy Union}(D) \] // Generate final Output Fuzzy Set

\[F = \int (\text{membershipFunction}\times\text{Outputvariable})/\int \text{MembershipFunction} \] // Defuzzification

\[G = \text{Linguisticterm}(F) \] // Final Diagnosis

end

getrelatedrule is used to generate the rules based on the input, and the fuzzyunion is used to generate the final fuzzy set.

The next describes the methodology of the developed system for the applications. Heart disease impacts the natural structure and functions of the heart. Many indicators are involved in causing heart disease. The indicator indicates the chance of getting a disease. The major indicators of heart disease are those that significantly increase the risks to heart and blood vessels (the cardiovascular system). The possibility of developing a heart disease depends on the number of indicators one has exposed. Some of the indicators in heart disease such as increasing age, and gender are related to birth and cannot be changed. Age and gender are the influencers of the cholesterol level [45]. Heart disease diagnosis with appropriate stages requires consideration of some other indicators such as chest pain, blood pressure, blood sugar, maximum heart rate, electrocardiography (ECG), exercise, old peak, thallium scan, coarctation of the aorta, slope like as age, gender and
Chapter 3: Methodology

cholesterol [45]. These thirteen indicators are the inputs of the heart disease application because these indicators are the main contributors in developing heart disease. The output of the system is the heart disease diagnosis. The explanation of each input for the heart disease application has been provided in Appendix A, A.1.

Diabetes Mellitus (DM) is a combination of diseases classified by the high blood glucose levels. High blood glucose level is a symptom of defective insulin receptors or lack of insulin producing islet cells [46]. The indicators for DM are the inputs of the developed system. In case of DM, the indicators are glucose concentration in blood after 2-hours of having breakfast, serum insulin (INS) in blood after 2 hours of having breakfast, number of pregnancy (for female), diastolic blood pressure, triceps skin fold thickness, body mass index (BMI), diabetes pedigree function (DPF), and age [46]. The output of the system for DM is the condition of DM, i.e. diabetes mellitus or no diabetes mellitus. The explanation of each input for the diabetes mellitus application has been provided in Appendix A, A.2.

The liver is the largest organ in the body. The liver is involved in a number of roles of converting food into energy and eliminating alcohol and poisons from the blood. If any of the normal functionality fails, it is considered to be a liver disorder (L_D). The indicators of L_D are the inputs of the system. In case of L_D, the indicators are mean corpuscular volume (MCV), alkaline phosphates (Alp), Sgpt alamine aminotransferase, Sgot aspertate aminotransferase, Gammagt gamma-glut amyl Tran peptidase, and drinks per day. The explanation of each input for the L_D has been provided in Appendix A, A.3. The following sections will describe the fuzzy
3.3.3 Fuzzification

This is the first step of fuzzy inference system. The fuzzy sets for the indicators, and the output of each disease along with the membership function were defined in fuzzification.

1. Fuzzy Sets for the Indicators and for the Output of Heart Disease:

 - Age: \{Young, Mid, Old, Very Old\}.
 - Cholesterol: \{Low, Medium, High, Very High\}.
 - Blood Pressure: \{Low, Medium, High, Very High\}.
 - Blood Sugar: \{Yes, No\}.
 - Maximum Heart rate: \{Low, Medium, High\}.
 - Electrocardiography (ECG): \{Normal, ST_Tabnormal, Hypertrophy\}.
 - Exercise: \{Yes, No\}.
 - Oldpeak: \{Low, Risk, Terrible\}.
 - Thallium Scan: \{Normal, FixedDefect, ReversibleDefect\}.
 - Coarctation of aorta (Ca): \{Mild, Moderate, Severe\}.
 - Slope: \{Upsloping, Flat, Downsloping\}.
 - Output: \{Healthy, Mild, Moderate, Severe, Very Severe\}.

Besides the above mentioned fuzzy sets, in case of gender, 0 is used to indicate “female”, and 1 to indicate “male”. Likewise, for yes and no fuzzy set, 1
indicates “yes” and 0 indicates “no”. In case of chest pain, there are four types of chest pain: atypical angina, typical angina, non angina, and asymptomatic. The chest pain is indicated by using: atypical angina = 1, typical angina = 2, non angina = 3, and asymptomatic = 4. A patient can have only one type of chest pain at any given time. In terms of the slope, it is indicated by using: up sloping = 1, flat = 2 and down sloping = 3. The output fuzzy set for healthy = 0, mild =1, moderate = 2, severe =3, and very severe = 4. This research modified the ranges used in [10] for the output fuzzy set. The reason behind the modification was that the figure of the output membership function in [10] didn’t match with the mentioned output ranges. The following table (3.3) shows the ranges of the output fuzzy sets used in this research for heart disease application.

Table 3.3: Ranges of the Output Fuzzy set for Heart Disease Application

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Range</th>
<th>Fuzzy Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>< 1</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>0 – 2</td>
<td>Mild</td>
</tr>
<tr>
<td></td>
<td>1 – 3</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>3 – 4</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>> 3.25</td>
<td>Very Severe</td>
</tr>
</tbody>
</table>

2. **Fuzzy Sets for the Indicators and for the Output of Diabetes Mellitus:**

- Number of Pregnancy: \{Absent, Normal, Risk\}.
Chapter 3: Methodology

- Diastolic Blood Pressure: {Low, Medium, High, Very High}.
- Teiceps Skin Thickness: {Good, Average, Below Average}.
- Glucose: {Low, Medium, High}.
- Insulin: {Low, Medium, High}.
- Body Mass Index (BMI): {Low, Medium, High}.
- Diabetes Pedigree Function (DPF): {Low, Medium, High}.
- Age: {Young, Medium, Old}.
- Output: {Low, Medium, High}.

For the output fuzzy set, the system used $0 = \text{Low}$, $1 = \text{Medium}$, and $2 = \text{High}$. The following table (3.4) shows the ranges of the output fuzzy sets.

Table 3.4: Ranges of the Output Fuzzy set for Diabetes Mellitus Application

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Range</th>
<th>Fuzzy Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>< 0.4</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>$0.4 - 0.6$</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>$0.5 - 1$</td>
<td>High</td>
</tr>
</tbody>
</table>

For the final result, this study considered low as “No Diabetes”, medium and high as “Diabetes”.

In terms of liver disorders, this research changed the fuzzy set used in [11] because the figure used to show the output membership function in [11] didn’t match with the mentioned output ranges. This study used the following fuzzy sets:
3. **Fuzzy sets for the Indicators and for the Output of Liver Disorders:**

- MCV: {Small, Normal, Big}.
- Alp: {Low, Normal, High}.
- SGPT: {Low, Normal, High}.
- SGOT: {Low, Normal, High}.
- Gammagt: {Low, Normal, High}.
- Drink: {Low, Normal, High}.
- Output {Healthy, ill}.

For the output fuzzy set, the system considered, 1= healthy, and 2 = ill. The following table (3.5) shows the ranges of the output fuzzy sets.

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Range</th>
<th>Fuzzy Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>< 6</td>
<td>Healthy Liver</td>
</tr>
<tr>
<td></td>
<td>4 – 10</td>
<td>ill Liver</td>
</tr>
</tbody>
</table>

Once all the indicators and their fuzzy sets were defined, the range values were prepared for the fuzzy sets of each indicator from the collected data collected of the physicians. When the range values for the fuzzy sets were ready, the equations were constructed by using the range values to generate the membership function.

This study used triangular and trapezoidal membership functions equation.
Chapter 3: Methodology

The triangular and trapezoidal membership functions are more useful compared to other types of membership functions because of their simple structures and degrees, which can be easily determined. The research works [10] [11] [12] that were followed in this study, also used these two types of membership functions. The general equation of triangular membership function (equation number 3.1), and trapezoidal membership function (equation number 3.2) are provided below:

\[
f(x, a, b, c) = \begin{cases}
0, & x \leq a \\
(x - a)/(b - a), & a < x < b \\
(c - x)/(c - b), & b < x < c \\
0, & c \leq a
\end{cases}
\]

\[
f(x, a, b, c, d) = \begin{cases}
0, & x \leq a \\
(x - a)/(b - a), & a \leq x \leq b \\
1, & b \leq x \leq c \\
(d - x)/(d - c), & c \leq x \leq d \\
0, & d \leq x
\end{cases}
\]

The calculations of the membership functions for each attribute of the developed system are provided in Appendix B. After generating the membership functions of the fuzzy sets, in order to get the most appropriate membership from the fuzzy set of each indicator, the maximum was taken from the generated membership function of the fuzzy set in each indicator. The maximum was considered because this study followed the Mamdani [20] method to develop the FIS. In Mamdani, maximum is taken from the generated membership function of the fuzzy sets to choose the appropriate membership function. For example, in heart disease application, a
Chapter 3: Methodology

patient with the following indicators: Age = 37, Gender = Male, Chest Pain = 3, Cholesterol = 268, Heart rate = 200, Blood Pressure = 100, Blood Sugar = 130, ECG = 1, Exercise = 0, Old peak = 2, Ca = 0, Slope = 3, Thallium scan = 3. The following fuzzy sets, and membership functions shown in table (3.6) is the sample example of fuzzification for the age of heart disease application. The rest of the above mentioned sample indicators for fuzzification are provided in Appendix A table (??), and (??).

Table 3.6: The Sample Result of Generating Membership Functions for Heart Disease (Using GetMembership Function in Algorithm)

<table>
<thead>
<tr>
<th>Input field</th>
<th>Fuzzy set</th>
<th>Membership Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age = 37</td>
<td>Young</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>Mid</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Old</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Very Old</td>
<td>0</td>
</tr>
</tbody>
</table>

In the above table (3.6) the input field column has the indicator “age” of heart disease, the fuzzy set field column has the fuzzy sets of the “age”, and the membership function field column has the value of membership functions generated for the fuzzy set of the “age”. After generating the membership functions, the maximum of the membership functions from the fuzzy set in the indicators are taken. For example, since age is 37, the generated membership functions are 0.31, 0.8, 0, and 0, which are shown in the membership function field in table (3.6). Then maximum (0.31, 0.8, 0, 0) = 0.8 is taken, which is the membership function for Mid. This is the
fuzzification of the system because Mid is the fuzzy result.

Similarly, the membership functions for the fuzzy set of each indicator for heart disease, diabetes mellitus, and liver disorders were executed. The sample example for diabetes mellitus, assume a patient with the following indicators: Number of pregnancy = 6, Glucose = 119, diastolic blood pressure = 72, Triceps skin fold thickness = 35, INS = 0, BMI = 29, DPF = 0.2, Age = 29, are shown in Appendix A table (??) (??). In addition to liver disorders, a patient with the following indicators: MCV = 85, Alp = 92, SGPT = 45, SGOT = 27, Gammagt = 31, Drink = 0, the fuzzy sets, and membership functions are shown in Appendix A table (??).

3.3.4 Rule Evaluation

After obtaining the linguistic terms of the indicators, the next step is to generate the fuzzy rules. For heart disease application, this study used 50 rules. Adeli et al. [10] used 44 rules. The paper is related to the developed heart disease application. In terms of Diabetes mellitus application, it has 25 rules. Kalpana et al [12] used 15 rules. Liver disorders application has the rule set of Neshat et al. [11], which are 18 in total. In this study, a few rules of each disease were changed in consultation with the physicians (domain experts), whose opinion were used for the range selection. For example, Adeli et al. [10] used the rule “If Chest Pain is angina then result is healthy”, which is not correct. Hence, angina is the symptom of heart disease [45]. Most of the fuzzy rules of this research followed by the paper. The rule set for each disease are provided in Appendix A table (A.6), (A.7), (A.8), (A.9), (A.10), (A.11), (A.13), and (A.14).
Chapter 3: Methodology

The rules have single antecedent and single consequent. The following table shows an example of rule evaluation for age used as the sample example mentioned before in the heart disease application.

Table 3.7: Sample Example of Fired Fuzzy IF-THEN Rules for Heart Disease (Using GetRelatedRule in the Algorithm)

<table>
<thead>
<tr>
<th>Input field</th>
<th>Selected Membership from the Fuzzy set</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (37)</td>
<td>Mid (.80)</td>
<td>Mild</td>
</tr>
</tbody>
</table>

Table (3.7), shows that after entering the inputs, the best matched membership of the fuzzy set for each input associated with its membership function is found. In the result column of the table (3.7), the fired rules are shown for each input. The fired rule is selected for a particular input from a set of rules. For example, age equal to 37, the fired rule is “If age is Middle then result is Mild” which is shown as “Mild” in the result column of the table (3.7).

The rules evaluation for the rest of the mentioned sample example for the heart disease application are provided in Appendix A table (??).

Also, the rule evaluation for the mentioned sample example of diabetes mellitus, and liver disorders are provided in Appendix A table (??), and (??) respectively. After evaluating the fuzzy rules, the antecedent result is applied to the consequent membership function using one of the methods: clipping, or scaling. In clipping, the consequent membership function is cut to the truth level of antecedent. In this method, the top of the membership function is sliced, which causes the clipped
fuzzy set to lose some information. In this study, another method called scaling is used because it loses less information, and provides more accurate defuzzification [47]. In scaling, the consequent membership function is adjusted by multiplying all its membership function with the antecedent truth value. In this research, scaling is similar to the calculation of the strength of the rules. The strength of the rules for age in the heart disease application are provided in table (3.8). The rest of the rules strength calculation for the heart disease application, diabetes mellitus, and liver disorders of the above described sample indicators are shown in Appendix table (??), (??)(??) and (??).

Table 3.8: Sample Rules strength Calculation for the Fired IF-THEN Rules of Heart Disease

<table>
<thead>
<tr>
<th>Antecedent</th>
<th>Consequent</th>
<th>Rule Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Age is Mid (.80)</td>
<td>Then result is Mild</td>
<td>0.80Mild</td>
</tr>
</tbody>
</table>

In the above table (3.8) the antecedent field contains the antecedent part of the rules with the membership function of the selected fuzzy membership. The consequent field contains the rules consequence with the output fuzzy membership. The rule strength field contains the product of antecedent membership function with the consequent membership function.

3.3.5 Aggregation of Rules

After calculating the strength of the evaluated rules, the rules were aggregated to get a single fuzzy set output. In Mamdani, maximum (OR operator) is used to aggregate the output fuzzy set.
3.3.6 Defuzzification

This section describes the last step of FIS design named defuzzification. Defuzzification is used to get a single output from the output fuzzy set. This research used centroid defuzzification method. The formula of centroid method has been provided in chapter 2. The center point of the output distribution are found by using the formula of the defuzzification. After defuzzification, a single crisp value was obtained. The crisp value is then fuzzified with the output membership function. The final output fuzzy set after aggregation, defuzzification, and the final diagnosis of the three applications for the sample indicators mentioned before are shown in table (3.9).
Table 3.9: Sample Result of FIS for Three Applications

<table>
<thead>
<tr>
<th>Application Name</th>
<th>Aggregation of Output Fuzzy Set</th>
<th>Defuzzification Result</th>
<th>OutputMF</th>
<th>Final Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Disease</td>
<td>{1 Healthy, 1Mild, 1Moderate, 0.48Severe, 1VerySevere}</td>
<td>1.66</td>
<td>Healthy =0, Mild=0.17, Moderate=0.67, Severe=0, VerySevere=0</td>
<td>The Patient is diagnosed of Moderate Heart Disease.</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>{1High, 0.93Medium, 1Low}</td>
<td>1</td>
<td>Low=0, Medium=0, High=1</td>
<td>The Patient is diagnosed of having Diabetes.</td>
</tr>
<tr>
<td>Liver Disorders</td>
<td>{1 Healthy}</td>
<td>1</td>
<td>Healthy liver=1, ill liver=0</td>
<td>The Patient is diagnosed of having healthy liver.</td>
</tr>
</tbody>
</table>

In table (3.9), the application name field has the name of the applications. The aggregation output fuzzy set field contains the final output fuzzy set. The defuzzification result field contain the result after the defuzzification of output.
fuzzy set. The output MF contains the fuzzy set of the output. Lastly, the final diagnosis field has the diagnosis result based on the output membership function.

The next two consideration of this study are dealing with the mixture data, and the missing data. In case of mixture data, the integration of the system will help to deal with that data. The part of the crisp data in the system will gather information dealing with the FIS design. In addition to the part of the linguistic terms, the system will gather information dealing with the schema design.

The last consideration of this study in order to develop fuzzy database system is to get decision from the missing data. Null values are identified as missing data in this thesis, which means that the data are not zero but unknown. In such cases, the fuzzy rule evaluation will not generate the fuzzy rules for the null data. For example, if there is a missing data in a particular field, then the fuzzy rules for that field will be null, and the diagnose result is calculated without the null field.

Chapter Summary:
In this chapter, the information that are relevant to the implementation of the main components FIS, and schema design of fuzzy database system are provided. The examples that are provided in FIS design and schema design will help in understanding the process of the system. The next chapter will describe the FIS and neural network in MATLAB to compare the prediction capability. The following chapter will show the outcomes of fuzzy database system for medical applications using crisp, linguistic term, mixture, and null values.
Chapter 4

Results

In the previous chapter, the main components of fuzzy database system were developed, which are fuzzy inference system referred to as FIS and fuzzy schema design to deal with linguistic terms. In this chapter, the user interface linked with the system is described. User interface designed for the integration of FIS and fuzzy schema for three different medical diagnostic systems (heart disease, diabetes mellitus, and liver disorders) using Microsoft Access 2007. In this chapter, FIS using the fuzzy rules and neural network are also implemented in MATLAB R2010a, in order to make a comparison of prediction capability between the two different prediction systems (i.e., FIS and neural network). Finally, a comparison of FIS implemented on MATLAB with the fuzzy database system is provided. For comparisons of the results (accuracy) of these applications abbreviation such as FIS, fuzzy schema design and MATLAB are used in this chapter.
4.1 Fuzzy Database Implementation

4.1.1 User Interface Design

SQL plays a fundamental role in the developed system. The major part of the development is done by using SQL. In case of FIS design, SQL is used to connect all the input memberships, fuzzy rules, and output membership to get the decision of the diagnosis. SQL was also used to develop the schema design. In case of schema design, tables, relationships among the tables and the query to retrieve the information of the diagnosis are created. All FIS and schema design are integrated through SQL. Some parts of the developed SQL as well as a snapshot of the developed system are provided in Appendix C.

The user interfaces were designed for heart disease, diabetes mellitus and liver disorders. Figures (4.1), (4.2) and (4.3) show the main forms for the data entry in heart disease, diabetes mellitus, and liver disorders applications respectively.

Figure 4.1: User Interface Design for Heart Disease Diagnosis.
Chapter 4: Results

Figure 4.2: User Interface Design for Diabetes Mellitus.

Figure 4.3: User Interface Design for Liver Disorders.

The heart disease application shown in figure (4.1) displays the diagnostic results with all data in crisp (numbers) form. In figure (4.2) for diabetes mellitus, the diagnostic results has been shown with the data in linguistic terms. Lastly, the diagnostic result for the liver disorders application has been shown in figure (4.3) with the mixture of crisp, linguistic, and null (unknown) data values.

As mentioned before, in case of null data, the value is not zero. After entering
the inputs including the situation of having *null* data (for example, in figure (4.3) ALP field) when saved the inputs, the results are calculated without generating the fuzzy rules for the *null* field.

4.2 Comparison Results of Fuzzy Database System for Different Data Types

The accuracy of the three applications are calculated considering the cases, when the data are crisp, linguistic, mixture of both as well as for *null* using the heart dataset [7], liver disorders dataset [9], and Pima Indian diabetes dataset [8]. For the performance metric, this study determined accuracy using the following formula:

\[
Accuracy = \left(\frac{\text{Total Number of Matched Records}}{\text{Total Number of Records}}\right) \times 100.
\]

(4.1)

The following table (4.1) shows the accuracy calculation.
Table 4.1: Performance Comparison of the Three Applications

<table>
<thead>
<tr>
<th>Name of Apps.</th>
<th>Total Records</th>
<th>Name of the System</th>
<th>Number of Matched Results with the results indicated in Dataset</th>
<th>Accuracy in Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Disease</td>
<td>303</td>
<td>Crisp</td>
<td>188</td>
<td>62.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linguistic</td>
<td>187</td>
<td>61.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mixture</td>
<td>184</td>
<td>60.72</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>768</td>
<td>Crisp</td>
<td>637</td>
<td>82.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linguistic</td>
<td>627</td>
<td>81.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mixture</td>
<td>621</td>
<td>80.85</td>
</tr>
<tr>
<td>Liver Disorders</td>
<td>368</td>
<td>Crisp</td>
<td>280</td>
<td>76.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linguistic</td>
<td>268</td>
<td>72.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mixture</td>
<td>257</td>
<td>69.83</td>
</tr>
</tbody>
</table>

The following figure (4.4) shows the graphs of performance measurement of developed fuzzy database system.
4.3 System Validation by Implementing Fuzzy Inference System in MATLAB

For the purpose of validation of the system, the fuzzy inference system for all the three applications (i.e., heart disease, diabetes mellitus, and liver disorders) were developed in MATLAB. In order to implement FIS in MATLAB, MATLAB R2010a version 7 fuzzy logic toolbox is used. MATLAB FIS implementation for the heart disease, diabetes mellitus and liver disorders used the same inputs and outputs as well as the same number of fuzzy rules as in the fuzzy database system (Fdb) for each disease diagnostic application described in chapter 3, sec 3.3. Three separate FIS were implemented in MATLAB for the three applications. The FIS method needs to be chosen initially while developing in MATLAB. This
study used the Mamdani method. Then the membership function for each input and output of the three applications should be defined separately. The range values for the input and output membership functions need to be defined as well. The fuzzy rules for each application are generated by connecting their input membership function to the output membership function.

Once all the fuzzy rules are generated, the sample inputs are applied to the rule viewer option of MATLAB to attain sample output. The following figure (4.5) shows an example of membership function for age of heart disease application in MATLAB.

Figure 4.5: Membership Function for Age of Heart Disease Diagnosis.

In figure(4.5), the fuzzy set for age are shown, which are young, mid, old, and very old. The values of the membership function for the fuzzy set are between 0 and 1. The membership functions are a combination of triangular and trapezoidal membership function. The structure of the FIS model in MATLAB is illustrated in figure (4.6).
Figure 4.6: FIS Structure for Heart Disease Diagnosis.

In figure (4.6), the fuzzy inference system for heart disease application is shown. The left side of the figure (4.6) displays the inputs and the right side displays the output.

In this study, the sensitivity of selecting different number of inputs are tested. The reason for doing this test is because in the similar work [10] the number of input attributes are 11, whereas in the developed Fdb and original dataset, the number of input attributes are 13 for heart disease application. In this respect, the heart disease application is developed using the same number of attributes in [10] (i.e., 11 attributes) and 13 attributes in dataset with the dataset [7] in MATLAB. Results obtained from the comparisons indicates that the different number of these selected attributes have no effect on the results. It means this research work is comparable with both [10] and original dataset [7]. Therefore, this study compared FIS developed for Fdb as well as MATLAB with the original dataset in rest of this chapter. The following figure (4.7) shows the sensitivity of selecting attributes of the heart disease application.
Figure 4.7: Sensitivity Analysis of Input Attributes for Heart Disease Application.

In the figure (4.7), the X-axis represents the patients identification number (i.e., patient no.) and the Y-axis represents the results (i.e., diagnostic results). Figure (4.7) shows a part of the sensitivity calculation of the attributes of 303 records using heart dataset.

4.4 Comparison of Prediction Capability of FIS With Another Heuristic Method

After calculating the accuracy of the fuzzy inference system, in order to compare the prediction capabilities of the fuzzy inference system, a neural network using MATLAB was implemented for the same applications. The neural network fitting toolbox from MATLAB was used to implement the neural network. In this toolbox,
Chapter 4: Results

The inputs and targets (output) of the dataset was loaded. By default, the neural network randomly divide 75% of data for training, 15% of data for validation and 15% of data for testing from the loaded dataset. The hidden neurons in intermediate layer is 20. After training the network, the number of the neurons can be changed if the network does not perform well. The following table (4.2) shows the comparison of prediction capability between implemented FIS in MATLAB and Neural Network for the same dataset.

<table>
<thead>
<tr>
<th>Name of Apps.</th>
<th>Total Records</th>
<th>Name of the System</th>
<th>Number of Matched Results with Dataset</th>
<th>Accuracy in Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Disease</td>
<td>303</td>
<td>MATLAB (FIS)</td>
<td>192</td>
<td>63.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neural Network</td>
<td>205</td>
<td>67.65</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>768</td>
<td>MATLAB (FIS)</td>
<td>649</td>
<td>84.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neural Network</td>
<td>671</td>
<td>87.36</td>
</tr>
<tr>
<td>Liver Disorders</td>
<td>368</td>
<td>MATLAB (FIS)</td>
<td>294</td>
<td>79.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neural Network</td>
<td>307</td>
<td>83.42</td>
</tr>
</tbody>
</table>

The following figure (4.8) shows the graphs of performance measurement between MATLAB (FIS) and neural network.
Chapter 4: Results

Figure 4.8: Performance Measurement between MATLAB and Neural Network.

By observing the accuracy of fuzzy inference system and neural network, it is clear that the neural network is approximately 4% more efficient in prediction compared to fuzzy inference system. However, FIS doesn’t require training, and works simply by finding the proper range values. Therefore, it is difficult for neural network to be implemented in database system.

The following figure (4.9) shows a comparison between the developed fuzzy database FIS and MATLAB FIS design.

Figure 4.9: Comparison between FIS Design of FDB and MATLAB
Again, by comparing the accuracy of fuzzy inference system in developed fuzzy database system and fuzzy inference system in MATLAB, we found that MATLAB is 2.23% more accurate than developed fuzzy database system. However, in database system, MATLAB can not be used.

4.5 Discussion on Experiments

This section will provide a small discussion on the experimented results of the developed system. While compared the cases of only crisp data (numbers), the cases of only linguistic terms, the cases of a mixture data, or null, the developed Fdb has shown the accuracy (in heart disease application) of 62.04% for crisp data and 61.71% accuracy of cases of datasets containing only linguistic terms, and 60.72% accuracy for mixed datasets (crisp, linguistic and null).

In diabetes mellitus application, the accuracy for crisp data is 82.94%, for linguistic terms is 81.64%, and in the case of mixture, it is 80.85%.

For liver disorders application accuracy was 76.08% for crisp data, 72.82% accuracy for linguistic, and 69.83% accurate for mixed datasets (containing crisp, linguistic and null).

To be able to validate the FIS used in Fdb, the FIS is implemented with the same number of input/output, fuzzy rules in MATLAB and compared with the original dataset.
Chapter 5

Conclusion

Fuzzy logic in database systems can be used to support vague, imprecise and uncertain information as well as perception based data. The main focus of this study is to use fuzzy logic for enhancing the ability of retrieving accurate information even if there is a lack of data in the database system. This study aims to address loosely defined boundary condition, which requires several comparisons for retrieving accurate data in the traditional database system.

The fuzzy database system was developed by the integration of fuzzy inference system and fuzzy schema design, for the application of heart disease, diabetes mellitus, and liver disorders. In terms of implementation, the system used SQL, which is available on any standard SQL-based database system such as Microsoft Access 2007. Microsoft Access 2007 was used for implementation because of its simple structure and user friendly environment. The developed fuzzy database system considered the cases for the crisp data, linguistic, mixture of both, or null data. The benefit of considering null is that the developed system will be able to
process information even when there is missing data. Using fuzzy logic in database helps users to define a range of values that enable the system to be able to consider boundary ambiguity in data values while retrieving information.

The implemented fuzzy database system was tested in the three applications heart disease, diabetes mellitus, and liver disorders by considering all the above mentioned cases. For these applications three comprehensive user friendly interfaces were designed. The system was tested by using the UCI machine learning dataset named heart, Pima Indian diabetes and liver disorders, which were used in most of the related researches.

The role of the developed fuzzy inference system and fuzzy schema design are to provide the diagnostic results when the data are in form of crisp or linguistic terms. The integration of both (FIS and fuzzy schema design) helped to retrieve the information, when the data are a mixture of both, or null. In the cases where there is incomplete data to diagnose, the developed fuzzy database system will be able to provide by determining the missing data or capturing the linguistic terms with the available data.

By comparing cases of only crisp data (numbers), cases of only linguistic terms, or when the data are a mixture or null, the developed system has shown the accuracy (in heart disease application) of 62.04% for crisp data while 61.7% accuracy of cases of datasets containing only linguistic terms, and 60.72% accuracy for mixed datasets (crisp, linguistic and null).

With regards to diabetes mellitus application, the accuracy for the data in form of crisp data is 82.94%, for linguistic terms is 81.64%, and in the case of mixture,
the accuracy is 80.85%.

For liver disorders application accuracy was 76.08% for crisp data, 72.82% accuracy for linguistic, and 69.83% accurate for mixed datasets (containing crisp, linguistic and null).

In order to compare the prediction capability of fuzzy inference system (FIS) with other methods, in this research neural network was used. Neural network is found to be approximately 4% more accurate compared to FIS. While comparing the accuracy, FIS for the heart disease application has 63.36% whereas neural network has 67.65%. In the case of diabetes mellitus application, FIS has 84.50%, and neural network has 87.36% accuracy. For liver disorders application FIS has 79.89%, and neural network has 83.42% accuracy.

However, training poses complications when implementing a neural network in a database system. The results of this research are tested with the application of heart disease, diabetes mellitus, and liver disorders, and implemented by a database system named Microsoft Access. This study used small number of fuzzy rules based on the above mentioned applications.

In summary, the contributions are as follows:

- Developed a fuzzy inference system (FIS) by SQL which is a language for common database systems and employing a new formulation of the range values for the fuzzy sets.
- Developed a fuzzy database system, able to provide diagnosis of a patient (i.e., can make a decision) when a variety of data exists in various forms including numbers (crisp), linguistic, mixture of both, or null (missing data) for the
three specific diseases: heart disease, diabetes mellitus and liver disorders.

- Developed FIS and neural network-based designs for the three applications in MATLAB in order to make a comparison of the prediction capabilities of the two approaches, using real data reported in the literature.

5.1 Future Work

As a future research direction, this research can be an initial step for dealing with fuzziness in the database systems. This study used Mamdani fuzzy inference system to develop the FIS. Another research direction can be the use of other fuzzy inference system named Sugeno method. In the case of data collection, this research used direct rating method. Thus, it is possible to extend the research by choosing other types of data collection methods (mentioned in section 3.1). In terms of membership function, this research used triangular membership function and trapezoidal membership function. Future research can be done by choosing other types of membership functions explained in chapter 2. While designing the FIS, this study defuzzified the result by centroid defuzzification method. It is worthy to perform future research by using other types of defuzzification methods explained in chapter 2 section 2.8 to observe the differences between the results of using different defuzzification approaches. In addition to testing the system with different fuzzy approaches, the fuzzy rules used for each disease can be modified or added by new fuzzy rules to provide better accuracy. However, the next step for this works including natural language parser to query information
more like human language. In the case of implementation, the system was
developed using Microsoft Access 2007. It is possible to do the research with
other database platform such as Oracle and test its functionality with regards to
reliability and other capabilities. To work with a traditional database system, this
study implemented FIS and schema design with SQL. In the future, other fuzzy
tools such as fsq1, sqlf can be used to observe the difference and outcomes of
different implementation languages.

This research can have an inclination to keep fuzziness in traditional database
system without using any fuzzy tools. In the case of FIS design, the maximum
number of fuzzy rules were 50 and minimum number of fuzzy rules were 18 based
on the developed applications. In the future, the system with large fuzzy rule sets
can be implemented. Therefore, the system can also be extended for more research
with complex diseases such as cancer. The developed FIS system can be used in
database systems containing available data of the three mentioned diseases but
can also be developed for other applications such as financial planners and many
more, can be incorporated FIS to be more functional that provide further directions
to this work.
Appendix A

Data Collection, Explanation of Indicators, Fuzzy Rules, Relationship Model

The data were collected while consulting with a representative group of physicians. After collecting the information from them, the following Table (A.3) (A.4) (A.5) are created in order to prepare the range of the data for heart disease, diabetes mellitus, and liver disorders to build the membership function in applications.
Table A.1: Physicians Rating for the Indicators of the Heart Disease

<table>
<thead>
<tr>
<th>Input field</th>
<th>Range</th>
<th>Fuzzy set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Physician</td>
<td>2nd Physician</td>
<td>3rd Physician</td>
</tr>
<tr>
<td>1. Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 30</td>
<td>≤ 29</td>
<td>≤ 38</td>
</tr>
<tr>
<td>33</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>≥ 52</td>
<td>≥ 53</td>
<td>≥ 54</td>
</tr>
<tr>
<td>2. Cholesterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 151</td>
<td>≤ 195</td>
<td>≤ 196</td>
</tr>
<tr>
<td>188</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>217</td>
<td>300</td>
<td>305</td>
</tr>
<tr>
<td>≥ 281</td>
<td>≥ 290</td>
<td>≥ 300</td>
</tr>
<tr>
<td>3. Blood Pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 111</td>
<td>≤ 130</td>
<td>≤ 134</td>
</tr>
<tr>
<td>127</td>
<td>130</td>
<td>150</td>
</tr>
<tr>
<td>142</td>
<td>159</td>
<td>170</td>
</tr>
<tr>
<td>≥ 154</td>
<td>≥ 160</td>
<td>≥ 155</td>
</tr>
</tbody>
</table>
Table A.2: Physicians Rating for the Indicators of the Heart Disease (Continued)

<table>
<thead>
<tr>
<th>Input field</th>
<th>Range</th>
<th>Fuzzy set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Physician</td>
<td>2nd Physician</td>
<td>3rd Physician</td>
</tr>
<tr>
<td>4. Blood Sugar</td>
<td>≥ 105</td>
<td>≥ 110</td>
</tr>
<tr>
<td>5. MaxHeartRate</td>
<td>≤ 100</td>
<td>≤ 130</td>
</tr>
<tr>
<td></td>
<td>111 – 160</td>
<td>130 – 170</td>
</tr>
<tr>
<td></td>
<td>≥ 152</td>
<td>≥ 155</td>
</tr>
<tr>
<td>6. ECG</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>≥ 1.3</td>
<td>≥ 1.5</td>
</tr>
<tr>
<td>7. Oldpeak</td>
<td>≤ 1</td>
<td>≤ 2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>≥ 4</td>
<td>≥ 4</td>
</tr>
<tr>
<td>8. Thalliumscan</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
Table A.3: Physicians Rating for the Indicators of the Diabetes Mellitus

<table>
<thead>
<tr>
<th>Input field</th>
<th>Range</th>
<th>Fuzzy set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Glucose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Physician</td>
<td>≤ 71 – 110</td>
<td>Low</td>
</tr>
<tr>
<td>2nd Physician</td>
<td>≤ 90</td>
<td>Low</td>
</tr>
<tr>
<td>3rd Physician</td>
<td>≤ 120</td>
<td>Low</td>
</tr>
<tr>
<td>4th Physician</td>
<td>≤ 121</td>
<td>Low</td>
</tr>
<tr>
<td>5th Physician</td>
<td>≤ 121</td>
<td>Low</td>
</tr>
<tr>
<td>94 – 120</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>97 – 138</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>94 – 148</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>≥ 121</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 122</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 124</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 125</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 196</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>2. INS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 15 – 80</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>≤ 15 – 78</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>≤ 20 – 86</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>≤ 17 – 87</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>≤ 19 – 89</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>15 – 100</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>17 – 90</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>15 – 100</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>15 – 194</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>≥ 89 – 194</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 95 – 193</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 192</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 194</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 193</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3. BMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 24</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>≤ 27</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>≤ 33</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>≤ 30</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>≤ 32</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>≥ 33</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 35</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 37</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 40</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 42</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>4. DPF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 0</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>≤ 0.2</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>≤ 0.3</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>≤ 0.4</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>≤ 0.4</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>≥ 0.4</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 0.6</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 0.7</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 0.4</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>≥ 0.9</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>5. Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 30</td>
<td>Young</td>
<td></td>
</tr>
<tr>
<td>≤ 29</td>
<td>Young</td>
<td></td>
</tr>
<tr>
<td>≤ 38</td>
<td>Young</td>
<td></td>
</tr>
<tr>
<td>≤ 35</td>
<td>Young</td>
<td></td>
</tr>
<tr>
<td>≤ 35</td>
<td>Young</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Mid</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Mid</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Mid</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Mid</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Mid</td>
<td></td>
</tr>
<tr>
<td>≥ 45 – 55</td>
<td>Old</td>
<td></td>
</tr>
<tr>
<td>≥ 47 – 54</td>
<td>Old</td>
<td></td>
</tr>
<tr>
<td>≥ 50</td>
<td>Old</td>
<td></td>
</tr>
<tr>
<td>≥ 58</td>
<td>Old</td>
<td></td>
</tr>
<tr>
<td>≥ 60</td>
<td>Old</td>
<td></td>
</tr>
</tbody>
</table>
Table A.4: Physicians Rating for the Indicators of the Liver Disorders

<table>
<thead>
<tr>
<th>Input field</th>
<th>1st Physician</th>
<th>2nd Physician</th>
<th>3rd Physician</th>
<th>4th Physician</th>
<th>5th Physician</th>
<th>Fuzzy set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MCV</td>
<td>≤ 60 ≤ 65 ≤ 75 ≤ 70 ≤ 78</td>
<td>78 90 95 100 100</td>
<td>Small Normal Big</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 100 ≥ 110 ≥ 100 ≥ 110 ≥ 120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. ALP</td>
<td>≤ 20 ≤ 28 ≤ 29 ≤ 30 ≤ 35</td>
<td>35–70 39–80 35–80 36–85 35–100</td>
<td>Low Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 100 ≥ 110 ≥ 120 ≥ 100 ≥ 130</td>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 80–140 ≥ 140 ≥ 95 ≥ 120 ≥ 140</td>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix A: Data Collection, Explanation of Indicators, Fuzzy Rules, Relationship Model

Table A.5: Physicians Rating for the Indicators of Liver Disorders (Continued)

<table>
<thead>
<tr>
<th></th>
<th>≤ 20</th>
<th>≤ 25</th>
<th>≤ 38</th>
<th>≤ 29</th>
<th>≤ 38</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SGOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>38–80</td>
<td>40–80</td>
<td>43–85</td>
<td>40–90</td>
<td>Normal</td>
</tr>
<tr>
<td>≥ 80</td>
<td>120</td>
<td>≥ 140</td>
<td>≥ 95</td>
<td>≥ 120</td>
<td>≥ 140</td>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>≤ 20</th>
<th>≤ 25</th>
<th>≤ 38</th>
<th>≤ 29</th>
<th>≤ 38</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Gammagt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>38–80</td>
<td>42–80</td>
<td>41–85</td>
<td>90</td>
<td>Normal</td>
</tr>
<tr>
<td>≥ 80</td>
<td>≥ 140</td>
<td>≥ 95</td>
<td>≥ 120</td>
<td>≥ 140</td>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>≤ 0.1</th>
<th>≤ 0.2</th>
<th>≤ 0.1</th>
<th>≤ 0.1</th>
<th>≤ 0.4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Drink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>1</td>
<td>0.5–1.2</td>
<td>0.4</td>
<td>1.2</td>
<td>Normal</td>
</tr>
<tr>
<td>≥ .8</td>
<td>≥ 1.2</td>
<td>≥ 1.5</td>
<td>≥ 1.6</td>
<td>≥ 1.8</td>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>

A.1 Explanation of the indicators of Heart Disease

1. **Age**: This input field is divided into four fuzzy sets Young, Mid, Old and Very old. Each one has membership function associated with it.

2. **Gender**: Gender has two representations (male and female). In this study, gender is represented numerically as 1 for male and 0 for female. So, it was not included in the physician’s rating form.

3. **Chest Pain**: There are four types of chest pain: typical angina, atypical angina, non angina, and asymptomatic. At any given time, a patient can have only
one chest pain. To describe chest pain, this thesis used: Typical Angina = 1, Atypical Angina = 2, Non Angina = 3, and Asymptomatic = 4. This term also was not included in the physician’s form.

4. **Cholesterol**: Types of cholesterol are-low density lipoprotein (LDL) and high density lipoprotein (HDL). HDL is considered to be “good cholesterol,” and LDL is considered “bad cholesterol”. Mainly, LDL is responsible in causing heart disease [45]. This study considered levels of LDL for cholesterol in the development of the diagnostic system. This field has four fuzzy sets low, medium, high and very high.

5. **Blood Pressure**: Blood pressure is another contributing indicator, increasing the heart’s workload, and causing the heart thicken and stiffen [45]. This thickness and stiffness decrease normal functionality of heart. Types of blood pressure include systolic, diastolic and mean types. Abnormal Systolic blood pressure is commonly associated to heart disease. This thesis considered systolic blood pressure. This field has four fuzzy sets low, medium, high and very high.

6. **Blood Sugar**: Blood sugar is another marker in the development of heart disease [45]. Uncontrolled blood sugar is the reason behind the high risk of developing heart disease. This data field has two fuzzy sets yes and no. If the patient has blood sugar ≥ 120, then the fuzzy set is yes. If it is <120, then the fuzzy set is no. To indicate “yes” and “no” this thesis used: Yes = 1, and no = 0.
7. **Maximum Heart rate**: Heart rate means the number of heart beats in a unit of time, such as per minute [48]. It is also known as pulse. In case of heart disease, the maximum heart rate in 24 hours of a person is considered. This field has three fuzzy sets low, medium and high.

8. **Electrocardiography**: ECG measures the electrical activity of the heart muscle. It is measured by several waves that appear on a graph paper, such as T wave, Q wave, P wave, S wave. There are two cases in ECG. One is normal and the other is abnormal [49]. The fuzzy sets for this field are Normal, ST Tabnormal and Hypertrophy.

9. **Exercise**: This field indicates whether the patient needs an exercise test or not. In this test, the patient needs to stress the heart by exercising on a treadmill making the heart rate fast and hard. In relation to ECG, if the ECG finding is normal but the patient has angina related chest pain, will require the exercise test. Exercise has two fuzzy sets “yes” and “no”. To indicate yes and no this thesis used “yes” = 1, and “no” = 0.

10. **Oldpeak**: “OldPeak” means ST depression induced by exercise, relative to the test. ST depression is related to the ECG field. In the developed system, assuming that the S wave and T wave of the patient were down in the ECG graph paper. It provides the information of the present condition of S wave and T wave of ECG [49]. It has three fuzzy sets low, risk and terrible.

11. **Thallium Scan**: A thallium scan measures the number of hours it takes for a heart image to appear on the screen of a gamma camera [50]. It detects
radioactive dye in the body. It has three fuzzy sets normal, fixed defect and reversible defect. Usually it takes 3 hours for the heart image to appear. In a fixed defect it appears within 6 hours, and 7 hours for reversible defect. Normal = 3, Fixed defect = 6, and Reversible defect = 7.

12. **Coarctation of the aorta**: The coarctation of the aorta means the narrowness of the aorta. The branching blood vessels are responsible to deliver oxygen-rich blood in the body. If the coarctation of the aorta occurs, then it is hard for the heart to deliver the blood due to the narrowness of the arteries. It is generally present at birth and may not be possible to detect until adulthood \[51\]. It has three fuzzy sets mild, moderate, and severe. To indicate mild, moderate, and severe this thesis used mild = 0 or 1, moderate = 2, and severe = 3. This term was not included in the physician’s rating form.

13. **Slope**: Sloping means to climb the stairs. It is also related to heart disease. It has three fuzzy sets up-sloping, flat and down-sloping. To indicate up-sloping, flat, and down-sloping this thesis used up-sloping = 1, flat = 2, and down-sloping = 3. This term also was not included in the physician’s rating form.

A.2 Explanation of the indicators of Diabetes Mellitus

1. **Number of pregnancy**: It is categorized as absent, low and risk. If a person is male then number of pregnancy will be absent.

2. **Diastolic blood pressure**: Similar blood pressure described in heart disease.
3. **Triceps skin fold thickness**: Is a value used to measure body fat.

4. **Glucose**: Glucose or blood sugar, is the main source of energy found in the blood. It is measured by 2-hour glucose concentration after 2 hours of having breakfast \[46\]. Glucose has three fuzzy sets low, medium and high.

5. **Insulin (INS)**: Insulin is the hormone excreted by the pancreas to help move glucose from the blood into the cells to be used for energy. It is measured by 2-hour serum insulin (INS) after 2 hours of having breakfast \[46\]. If the cells do not respond well to insulin then glucose is unable to enter the cells. Consequently, the cells fail to get the fuel they need, and glucose builds up in the blood stream. INS has three fuzzy sets low, medium and high.

6. **Body Mass Index (BMI)**: BMI is considered as an assessment of evaluating the weight of the body in relation to the height of a person. This field consists of three fuzzy sets in the developed system are low, medium and high.

7. **Diabetes Pedigree Function (DPF)**: DPF is the statistical classification of a certain group of data \[46\]. For example, of the age group 40-45, data are analysed and calculated when determining statistical values for the age group. DPF consists of three fuzzy sets low, medium and high.

8. **Age**: Age is considered to be another indicator of diabetes. Age has three fuzzy sets young, medium and old.
A.3 Explanation of the indicators of Liver Disorders

1. **Mean Corpuscular Volume (MCV):** MCV is a measurement of the average cell size of the red blood. The MCV is said to be a part of a touchstone total blood count. It is estimated by the division between the total volume of packed red cells and the total red blood cells [52]. The unit of MCV is in femtoliters (fl). It has three fuzzy sets low, normal and high.

2. **Alkphos (ALP):** ALP is a hydrolyse enzyme. It is responsible for removing phosphates from many types of molecules, including nucleotide protein and alkaloid [52]. ALP has three fuzzy sets low, normal and high.

3. **SGPT:** Serum glutamic pyruvic transaminase (SGPT) is an enzyme. Normally, it exists in liver and heart cells. When the liver or heart is damaged, then SGPT is released into the blood [52]. Thus, SGPT blood levels are elevated with liver damage. There are three fuzzy sets low, normal and high.

4. **SGOT:** Similar to SGPT, serum glutamic oxaloacetic transaminase (SGOT) is an enzyme that normally presents in liver and heart cells [52]. Like SGPT, it is released into the blood when the liver or heart is damaged. Thus, SGOT blood levels are elevated with liver damage. In the system, there are three fuzzy sets low, normal and high.

5. **Gammagt:** Gammagt is another enzyme that transfers gamma glut amyl functional group existed in many tissues, most notably the liver [52]. It has significance in medicine as a diagnostic marker. In the system, it has three fuzzy sets low, normal and high.
6. **Drink**: Drinking means consuming alcohol such as beer, wine etc. In case of moderate drinking, the liver can process the alcohol somewhat safely. However, excessive drinking dissipates the liver, causing serious outcomes. It can be the cause of clogging the liver with fat. As a consequence, liver cells lose efficiency, to perform their necessary tasks resulting in impairment of an individual’s nutritional health. It is measured by a blood alcohol test [52]. In the developed system, it has three fuzzy sets low, normal and high.
Fuzzy Rules for Heart Disease:

Table A.6: Fuzzy Rules for Heart Disease

<table>
<thead>
<tr>
<th>No.</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>If Chest Pain is Non Angina then Disease Condition is Healthy</td>
</tr>
<tr>
<td>2.</td>
<td>If Chest Pain is Typical Angina then Disease Condition is Moderate</td>
</tr>
<tr>
<td>3.</td>
<td>If Chest Pain is Atypical Angina then Disease Condition is Severe</td>
</tr>
<tr>
<td>4.</td>
<td>If Chest Pain is Atypical Angina then Disease Condition is Very Severe</td>
</tr>
<tr>
<td>5.</td>
<td>If Chest Pain is Asymptomatic then Disease Condition is Healthy</td>
</tr>
<tr>
<td>6.</td>
<td>If Gender is Female then Disease Condition is Mild</td>
</tr>
<tr>
<td>7.</td>
<td>If Gender is Male then Disease Condition is Moderate</td>
</tr>
<tr>
<td>8.</td>
<td>If Blood Pressure is Low then Disease Condition is Healthy</td>
</tr>
<tr>
<td>9.</td>
<td>If Blood Pressure is Medium then Disease Condition is Mild</td>
</tr>
<tr>
<td>10.</td>
<td>If Blood Pressure is High then Disease Condition is Moderate</td>
</tr>
<tr>
<td>No.</td>
<td>Rules</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>11.</td>
<td>If Blood Pressure is High then Disease Condition is Severe</td>
</tr>
<tr>
<td>12.</td>
<td>If Blood Pressure is Very High then Disease Condition is Very Severe</td>
</tr>
<tr>
<td>13.</td>
<td>If Cholesterol is Low then Disease Condition is Healthy</td>
</tr>
<tr>
<td>14.</td>
<td>If Cholesterol is Medium then Disease Condition is Mild</td>
</tr>
<tr>
<td>15.</td>
<td>If Cholesterol is High then Disease Condition is Moderate</td>
</tr>
<tr>
<td>16.</td>
<td>If Cholesterol is High then Disease Condition is Severe</td>
</tr>
<tr>
<td>17.</td>
<td>If Cholesterol is Very High then Disease Condition is Very Severe</td>
</tr>
<tr>
<td>18.</td>
<td>If Blood Sugar is True then Disease Condition is Moderate</td>
</tr>
<tr>
<td>19.</td>
<td>If ECG is Normal then Disease Condition is Healthy</td>
</tr>
<tr>
<td>20.</td>
<td>If ECG is ST Tabnormal then Disease Condition is Mild</td>
</tr>
</tbody>
</table>
Table A.8: Fuzzy Rules for Heart Disease (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>If ECG is ST_Tabnormal then Disease Condition is Moderate</td>
</tr>
<tr>
<td>22</td>
<td>If ECG is Hypertrophy then Disease Condition is Severe</td>
</tr>
<tr>
<td>23</td>
<td>If ECG is Hypertrophy then Disease Condition is Very Severe</td>
</tr>
<tr>
<td>24</td>
<td>If Maximum Heart rate is low then Disease Condition is Healthy</td>
</tr>
<tr>
<td>25</td>
<td>If Maximum Heart rate is Medium then Disease Condition is Mild</td>
</tr>
<tr>
<td>26</td>
<td>If Maximum Heart rate is High then Disease Condition is Severe</td>
</tr>
<tr>
<td>27</td>
<td>If Maximum Heart rate is High then Disease Condition is Very Severe</td>
</tr>
<tr>
<td>28</td>
<td>If Exercise is True then Disease Condition is Moderate</td>
</tr>
<tr>
<td>29</td>
<td>If Exercise is True then Disease Condition is Severe</td>
</tr>
<tr>
<td>30</td>
<td>If Exercise is True then Disease Condition is Very Severe</td>
</tr>
</tbody>
</table>
Table A.9: Fuzzy Rules For Heart Disease (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.</td>
<td>If Old Peak is Low then Disease Condition is Healthy</td>
</tr>
<tr>
<td>32.</td>
<td>If Old Peak is Low then Disease Condition is Mild</td>
</tr>
<tr>
<td>33.</td>
<td>If Old Peak is Terrible then Disease Condition is Moderate</td>
</tr>
<tr>
<td>34.</td>
<td>If Old Peak is Terrible then Disease Condition is Severe</td>
</tr>
<tr>
<td>35.</td>
<td>If Old Peak is Risk then Disease condition is Very Severe</td>
</tr>
<tr>
<td>36.</td>
<td>If Thallium Scan is Normal then Disease Condition is Healthy</td>
</tr>
<tr>
<td>37.</td>
<td>If Thallium Scan is Fixed Defect then Disease Condition is Moderate</td>
</tr>
<tr>
<td>38.</td>
<td>If Thallium Scan is Reversible Defect then Disease Condition is Severe</td>
</tr>
<tr>
<td>39.</td>
<td>If Thallium Scan is Reversible Defect then Disease Condition is Very Severe</td>
</tr>
</tbody>
</table>
Table A.10: Fuzzy Rules for Heart Disease (Continued)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.</td>
<td>If Age is Young then Disease Condition is Healthy</td>
</tr>
<tr>
<td>41.</td>
<td>If Age is Mid then Disease Condition is Mild</td>
</tr>
<tr>
<td>42.</td>
<td>If Age is Old then Disease Condition is Moderate</td>
</tr>
<tr>
<td>43.</td>
<td>If Age is Old then Disease Condition is Severe</td>
</tr>
<tr>
<td>44.</td>
<td>If Age is Very Old then Disease Condition is Very Severe</td>
</tr>
<tr>
<td>45.</td>
<td>If Coarctation is Mild then Disease Condition is Mild</td>
</tr>
<tr>
<td>46.</td>
<td>If Coarctation is Moderate then Disease Condition is Moderate</td>
</tr>
<tr>
<td>47.</td>
<td>If Coarctation is Severe then Disease Condition is Very Severe</td>
</tr>
<tr>
<td>48.</td>
<td>If Slope is Upsloping then Disease Condition is Severe</td>
</tr>
<tr>
<td>49.</td>
<td>If Slope is Flat then Disease Condition is Healthy</td>
</tr>
<tr>
<td>50.</td>
<td>If Slope is Downsloping then Disease Condition is Very Severe</td>
</tr>
</tbody>
</table>
Appendix A: Data Collection, Explanation of Indicators, Fuzzy Rules, Relationship Model

Fuzzy Rules for Diabetes Mellitus

Table A.11: Fuzzy Rules of Diabetes Mellitus

<table>
<thead>
<tr>
<th>No.</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>If Glucose is Low then Diabetes Mellitus is Low</td>
</tr>
<tr>
<td>2.</td>
<td>If Glucose is Medium then Diabetes Mellitus is Medium</td>
</tr>
<tr>
<td>3.</td>
<td>If Glucose is High then Diabetes Mellitus is High</td>
</tr>
<tr>
<td>4.</td>
<td>If Insulin is Low then Diabetes Mellitus is Low</td>
</tr>
<tr>
<td>5.</td>
<td>If Insulin is Medium then Diabetes Mellitus is Medium</td>
</tr>
<tr>
<td>6.</td>
<td>If Insulin is High then Diabetes Mellitus is High</td>
</tr>
<tr>
<td>7.</td>
<td>If Body Mass Index is Low then Diabetes Mellitus is Low</td>
</tr>
</tbody>
</table>
Table A.12: Fuzzy Rules for Diabetes Mellitus (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>If Body Mass Index is Medium then Diabetes Mellitus is Medium</td>
</tr>
<tr>
<td>9.</td>
<td>If Body Mass Index is High then Diabetes Mellitus is High</td>
</tr>
<tr>
<td>10.</td>
<td>If Diabetes Pedigree Function is Low then Diabetes is Low</td>
</tr>
<tr>
<td>11.</td>
<td>If Diabetes Pedigree Function is Medium then Diabetes Mellitus is Medium</td>
</tr>
<tr>
<td>12.</td>
<td>If Diabetes Pedigree Function is High then Diabetes Mellitus is High</td>
</tr>
<tr>
<td>13.</td>
<td>If Age is Young then Diabetes Mellitus is Low</td>
</tr>
<tr>
<td>14.</td>
<td>If Age is Medium then Diabetes Mellitus is Medium</td>
</tr>
<tr>
<td>15.</td>
<td>If Age is Old then Diabetes Mellitus is High</td>
</tr>
<tr>
<td>16.</td>
<td>If Number of pregnancy is absent then Diabetes Mellitus is Low</td>
</tr>
<tr>
<td>17.</td>
<td>If Number of pregnancy is Normal then Diabetes Mellitus is Medium</td>
</tr>
</tbody>
</table>
Table A.13: Fuzzy Rules for Diabetes Mellitus (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>If Number of pregnancy is High then Diabetes Mellitus is High</td>
</tr>
<tr>
<td>19.</td>
<td>If Triceps skin fold thickness is Good then Diabetes Mellitus is Low</td>
</tr>
<tr>
<td>20.</td>
<td>If Triceps skin fold thickness is Average then Diabetes Mellitus is Medium</td>
</tr>
<tr>
<td>21.</td>
<td>If Triceps skin fold thickness is Below average then Diabetes Mellitus is High</td>
</tr>
<tr>
<td>22.</td>
<td>If Diastolic blood pressure is low then Diabetes Mellitus is Low</td>
</tr>
<tr>
<td>23.</td>
<td>If Diastolic blood pressure is Medium then Diabetes Mellitus is Medium</td>
</tr>
<tr>
<td>24.</td>
<td>If Diastolic blood pressure is High then Diabetes Mellitus is High</td>
</tr>
<tr>
<td>25.</td>
<td>If Diastolic blood pressure is Very high then Diabetes Mellitus is High</td>
</tr>
</tbody>
</table>
Fuzzy Rules for Liver Disorder (L.D):

Table A.14: Fuzzy Rules for Liver Disorders (L.D)

<table>
<thead>
<tr>
<th>No.</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>If MCV is small then L.D is Ill</td>
</tr>
<tr>
<td>2.</td>
<td>If MCV is Normal then L.D is Healthy</td>
</tr>
<tr>
<td>3.</td>
<td>If MCV is Big then L.D is Ill</td>
</tr>
<tr>
<td>4.</td>
<td>If ALP is Low then L.D is Healthy</td>
</tr>
<tr>
<td>5.</td>
<td>If ALP is Normal then L.D is Healthy</td>
</tr>
<tr>
<td>6.</td>
<td>If ALP is High then L.D is Ill</td>
</tr>
<tr>
<td>7.</td>
<td>If SGOT is Low then L.D is Healthy</td>
</tr>
<tr>
<td>8.</td>
<td>If SGOT is Normal then L.D is Healthy</td>
</tr>
<tr>
<td>9.</td>
<td>If SGOT is High then L.D is Ill</td>
</tr>
<tr>
<td>10.</td>
<td>If GAMMAGT is Low then L.D is Healthy</td>
</tr>
<tr>
<td>11.</td>
<td>If GAMMAGT is Normal then L.D Healthy</td>
</tr>
<tr>
<td>12.</td>
<td>If GAMMAGT is High then L.D is Ill</td>
</tr>
<tr>
<td>13.</td>
<td>If SGPT is Low then L.D is Healthy</td>
</tr>
<tr>
<td>14.</td>
<td>If SGPT is Normal then L.D is Healthy</td>
</tr>
<tr>
<td>15.</td>
<td>If SGPT is High then L.D is ILL</td>
</tr>
<tr>
<td>16.</td>
<td>If Drink is Low then L.D is Healthy</td>
</tr>
<tr>
<td>17.</td>
<td>If Drink is Normal then L.D is Healthy</td>
</tr>
<tr>
<td>18.</td>
<td>If Drink is High then L.D is Ill</td>
</tr>
</tbody>
</table>
Appendix B

Membership Function Calculation

Membership Function Calculation of Heart Disease Indicators:

1. The membership function for age is calculated as follows:

\[\mu_{\text{young}}(Age) = \begin{cases}
1, & \text{if } Age < 29 \\
(38 - Age)/9, & \text{if } 29 \leq Age < 38 \\
0, & \text{Otherwise}
\end{cases} \] (B.1)

\[\mu_{\text{Mid}}(Age) = \begin{cases}
1, & \text{if } Age = 38 \\
(Age - 33)/5, & \text{if } 33 \leq Age < 38 \\
(45 - Age)/7, & \text{if } 38 \leq Age < 45 \\
0, & \text{Otherwise}
\end{cases} \] (B.2)

\[\mu_{\text{Old}}(Age) = \begin{cases}
1, & \text{if } Age = 48 \\
(Age - 40)/8, & \text{if } 40 \leq Age < 48 \\
(58 - Age)/10, & \text{if } 48 \leq Age < 58 \\
0, & \text{Otherwise}
\end{cases} \] (B.3)
Appendix B: Membership Function Calculation

\[\mu_{\text{VeryOld}}(\text{Age}) = \begin{cases}
1, & \text{if } \text{Age} \geq 60 \\
(Age - 52)/8, & \text{if } 52 \leq \text{Age} < 60 \\
0, & \text{Otherwise}
\end{cases} \] (B.4)

2. The membership function for cholesterol (Cho) is calculated as follows:

\[\mu_{\text{low}}(\text{Cho}) = \begin{cases}
1, & \text{if } \text{Cho} < 151 \\
(197 - \text{Cho})/46, & \text{if } 151 \leq \text{Cho} < 197 \\
0, & \text{Otherwise}
\end{cases} \] (B.5)

\[\mu_{\text{medium}}(\text{Cho}) = \begin{cases}
1, & \text{if } \text{Cho} = 215 \\
(\text{Cho} - 188)/27, & \text{if } 188 \leq \text{Cho} < 215 \\
(250 - \text{Cho})/35, & \text{if } 215 \leq \text{Cho} < 250 \\
0, & \text{Otherwise}
\end{cases} \] (B.6)

\[\mu_{\text{high}}(\text{Cho}) = \begin{cases}
1, & \text{if } \text{Cho} = 263 \\
(\text{Cho} - 217)/46, & \text{if } 217 \leq \text{Cho} < 263 \\
(307 - \text{Cho})/44, & \text{if } 263 \leq \text{Cho} < 307 \\
0, & \text{Otherwise}
\end{cases} \] (B.7)

\[\mu_{\text{Veryhigh}}(\text{Cho}) = \begin{cases}
1, & \text{if } \text{Cho} \geq 347 \\
(\text{Cho} - 281)/66, & \text{if } 281 \leq \text{Cho} < 347 \\
0, & \text{Otherwise}
\end{cases} \] (B.8)
Appendix B: Membership Function Calculation

3. The membership function for blood pressure (BP) is calculated as follows:

\[
\mu_{low}(BP) = \begin{cases}
1, & \text{if } BP < 111 \\
(134 - BP)/23, & \text{if } 111 \leq BP < 134 \\
0, & \text{Otherwise}
\end{cases}
\] (B.9)

\[
\mu_{medium}(BP) = \begin{cases}
1, & \text{if } BP = 139 \\
(BP - 127)/12, & \text{if } 127 \leq BP < 139 \\
(153 - BP)/14, & \text{if } 139 \leq BP < 153 \\
0, & \text{Otherwise}
\end{cases}
\] (B.10)

\[
\mu_{high}(BP) = \begin{cases}
1, & \text{if } BP = 157 \\
(BP - 142)/15, & \text{if } 142 \leq BP < 157 \\
(172 - BP)/15, & \text{if } 157 \leq BP < 172 \\
0, & \text{Otherwise}
\end{cases}
\] (B.11)

\[
\mu_{veryhigh}(BP) = \begin{cases}
1, & \text{if } BP \geq 171 \\
(BP - 154)/17, & \text{if } 154 \leq BP < 171 \\
0, & \text{Otherwise}
\end{cases}
\] (B.12)

4. The membership function for maximum heart rate (HB) is calculated as follows:

\[
\mu_{low}(HB) = \begin{cases}
1, & \text{if } HB < 100 \\
(141 - HB)/41, & \text{if } 100 \leq HB < 141 \\
0, & \text{Otherwise}
\end{cases}
\] (B.13)
Appendix B: Membership Function Calculation

\[\mu_{\text{medium}}(HB) = \begin{cases}
1, & \text{if } HB = 152 \\
(HB - 111)/41, & \text{if } 111 \leq HB < 152 \\
(194 - HB)/42, & \text{if } 152 \leq HB < 194 \\
0, & \text{Otherwise}
\end{cases} \]
(B.14)

\[\mu_{\text{high}}(HB) = \begin{cases}
1, & \text{if } HB \geq 216 \\
(HB - 152)/64, & \text{if } 152 \leq HB < 216 \\
0, & \text{Otherwise}
\end{cases} \]
(B.15)

5. The membership function for blood sugar (BS) is calculated as follows:

\[\mu_{\text{veryHigh}}(BS) = \begin{cases}
1, & \text{if } BS \geq 120 \\
(BS - 105)/15, & \text{if } 105 \leq BS \leq 120 \\
0, & \text{Otherwise}
\end{cases} \]
(B.16)

6. The membership function for ECG is calculated as follows:

\[\mu_{\text{normal}}(ECG) = \begin{cases}
1, & \text{if } ECG \leq 0.3 \\
(0.5 - ECG)/0.1, & \text{if } 0.4 \leq ECG \leq 0.5 \\
0, & \text{Otherwise}
\end{cases} \]
(B.17)

\[\mu_{\text{STTabnormal}}(ECG) = \begin{cases}
1, & \text{if } ECG = 1 \\
(ECG - 0.5)/0.5, & \text{if } 0.5 \leq ECG \leq 1 \\
0, & \text{Otherwise}
\end{cases} \]
(B.18)

\[\mu_{\text{hypertrophy}}(ECG) = \begin{cases}
1, & \text{if } BP \geq 1.8 \\
(ECG - 1.3)/0.5, & \text{if } 1.3 \leq ECG \leq 1.8 \\
0, & \text{Otherwise}
\end{cases} \]
(B.19)
Appendix B: Membership Function Calculation

7. The membership function for oldpeak is calculated as follows:

\[
\mu_{low}(Oldpeak) = \begin{cases}
1, & \text{if } Oldpeak < 1 \\
(2 - Oldpeak)/1, & \text{if } 1 \leq Oldpeak < 2 \\
0, & \text{Otherwise}
\end{cases} \quad (B.20)
\]

\[
\mu_{risk}(Oldpeak) = \begin{cases}
1, & \text{if } Oldpeak = 2.8 \\
(Oldpeak - 2)/0.8, & \text{if } 2 \leq Oldpeak < 2.8 \\
(4.2 - Oldpeak)/1.4, & \text{if } 2.8 \leq Oldpeak < 4.2 \\
0, & \text{Otherwise}
\end{cases} \quad (B.21)
\]

\[
\mu_{terrible}(Oldpeak) = \begin{cases}
1, & \text{if } Oldpeak \geq 4 \\
0, & \text{Otherwise}
\end{cases} \quad (B.22)
\]

Membership Function Calculation of Diabetes Mellitus Indicators:

1. The membership function for Glucose is calculated as follows:

\[
\mu_{low}(Glucose) = \begin{cases}
1, & \text{if } Glucose < 71 \\
(Glucose - 71)/23, & \text{if } 71 \leq Glucose < 94 \\
(121 - Glucose)/27, & \text{if } 94 \leq Glucose < 121 \\
0, & \text{Otherwise}
\end{cases} \quad (B.23)
\]
Appendix B: Membership Function Calculation

\[
\mu_{medium}(\text{Glucose}) = \begin{cases}
1, & \text{if} \quad \text{Glucose} = 121 \\
(Glucose - 94)/27, & \text{if} \quad 94 \leq \text{Glucose} < 121 \\
(148 - \text{Glucose})/27, & \text{if} \quad 121 \leq \text{Glucose} < 148 \\
0, & \text{Otherwise}
\end{cases}
\]
(B.24)

\[
\mu_{high}(\text{Glucose}) = \begin{cases}
1, & \text{if} \quad \text{Glucose} \geq 196 \\
(Glucose - 121)/27, & \text{if} \quad 121 \leq \text{Glucose} < 148 \\
(196 - \text{Glucose})/27, & \text{if} \quad 148 \leq \text{Glucose} < 196 \\
0, & \text{Otherwise}
\end{cases}
\]
(B.25)

2. The membership function for diastolic blood pressure (DBP) is calculated as follows:

\[
\mu_{low}(DBP) = \begin{cases}
1, & \text{if} \quad DBP < 111 \\
(134 - DBP)/23, & \text{if} \quad 111 \leq DBP < 134 \\
0, & \text{Otherwise}
\end{cases}
\]
(B.26)

\[
\mu_{medium}(DBP) = \begin{cases}
1, & \text{if} \quad DBP = 139 \\
(DBP - 127)/12, & \text{if} \quad 127 \leq DBP < 139 \\
(153 - DBP)/14, & \text{if} \quad 139 \leq DBP < 153 \\
0, & \text{Otherwise}
\end{cases}
\]
(B.27)
Appendix B: Membership Function Calculation

\[\mu_{\text{high}}(DBP) = \begin{cases}
1, & \text{if } DBP = 157 \\
(DBP - 142)/15, & \text{if } 142 \leq DBP < 157 \\
(172 - DBP)/15, & \text{if } 157 \leq DBP < 172 \\
0, & \text{Otherwise}
\end{cases} \]

(B.28)

\[\mu_{\text{very high}}(DBP) = \begin{cases}
1, & \text{if } DBP \geq 171 \\
(DBP - 154)/17, & \text{if } 154 \leq DBP < 171 \\
0, & \text{Otherwise}
\end{cases} \]

(B.29)

3. The membership function for Insulin is calculated as follows:

\[\mu_{\text{low}}(INS) = \begin{cases}
1, & \text{if } INS < 15 \\
(89 - INS)/74, & \text{if } 15 \leq INS < 89 \\
0, & \text{Otherwise}
\end{cases} \]

(B.30)

\[\mu_{\text{medium}}(INS) = \begin{cases}
1, & \text{if } INS = 89 \\
(INS - 15)/74, & \text{if } 15 \leq INS < 89 \\
(194 - INS)/105, & \text{if } 89 \leq INS < 194 \\
0, & \text{Otherwise}
\end{cases} \]

(B.31)

\[\mu_{\text{High}}(INS) = \begin{cases}
1, & \text{if } INS \geq 194 \\
(INS - 89)/105, & \text{if } 89 \leq INS < 194 \\
0, & \text{Otherwise}
\end{cases} \]

(B.32)
4. The membership function for BMI is calculated as follows:

\[
\mu_{low}(BMI) = \begin{cases}
1, & \text{if } BMI < 24 \\
(33 - BMI)/9, & \text{if } 24 \leq BMI < 33 \\
0, & \text{Otherwise}
\end{cases} \tag{B.33}
\]

\[
\mu_{medium}(BMI) = \begin{cases}
1, & \text{if } BMI = 33 \\
(42 - BMI)/9, & \text{if } 33 < BMI < 42 \\
0, & \text{Otherwise}
\end{cases} \tag{B.34}
\]

\[
\mu_{high}(BMI) = \begin{cases}
1, & \text{if } BMI > 42 \\
(BMI - 33)/9, & \text{if } 33 \leq Glucose \leq 42 \\
0, & \text{Otherwise}
\end{cases} \tag{B.35}
\]

5. The membership function for DPF is calculated as follows:

\[
\mu_{low}(DPF) = \begin{cases}
1, & \text{if } DPF \leq 0 \\
(0.4 - DPF)/0.3, & \text{if } 0.1 \leq DPF < 0.4 \\
0, & \text{Otherwise}
\end{cases} \tag{B.36}
\]

\[
\mu_{medium}(DPF) = \begin{cases}
1, & \text{if } DPF = 0.4 \\
(DPF - 0.2)/0.2, & \text{if } 0.2 \leq DPF < 0.4 \\
(0.6 - DPF)/0.2, & \text{if } 0.4 < DPF < 0.6 \\
0, & \text{Otherwise}
\end{cases} \tag{B.37}
\]

\[
\mu_{high}(DPF) = \begin{cases}
1, & \text{if } DPF \geq 0.9 \\
(DPF - 0.4)/0.2, & \text{if } 0.4 \leq DPF < 0.6 \\
(0.9 - DPF)/0.3, & \text{if } 0.6 \leq DPF < 0.9 \\
0, & \text{Otherwise}
\end{cases} \tag{B.38}
\]
Appendix B: Membership Function Calculation

6. The membership function for Age is calculated as follows:

\[\mu_{\text{young}}(Age) = \begin{cases}
1, & \text{if } Age \leq 26 \\
(Age - 29)/6, & \text{if } 29 < Age \leq 35 \\
0, & \text{Otherwise}
\end{cases} \]
(B.39)

\[\mu_{\text{Medium}}(Age) = \begin{cases}
1, & \text{if } Age = 38 \\
(Age - 33)/12, & \text{if } 33 \leq Age < 45 \\
0, & \text{Otherwise}
\end{cases} \]
(B.40)

\[\mu_{\text{Old}}(Age) = \begin{cases}
0, & \text{if } Age < 45 \\
(50 - Age)/5, & \text{if } 45 \leq Age < 50 \\
1, & \text{Otherwise}
\end{cases} \]
(B.41)

Membership Function Calculation of Liver Disorders Indicators:

1. The membership function for MCV is calculated as follows:

\[\mu_{\text{Small}}(MCV) = \begin{cases}
1, & \text{if } MCV < 60 \\
(78 - MCV)/18, & \text{if } 60 \leq MCV < 78 \\
0, & \text{Otherwise}
\end{cases} \]
(B.42)

\[\mu_{\text{Normal}}(MCV) = \begin{cases}
1, & \text{if } MCV = 90 \\
(100 - MCV)/22, & \text{if } 78 \leq MCV < 100 \\
0, & \text{Otherwise}
\end{cases} \]
(B.43)

\[\mu_{\text{Big}}(MCV) = \begin{cases}
1, & \text{if } MCV \geq 120 \\
(120 - MCV)/20, & \text{if } 100 \leq MCV < 120 \\
0, & \text{Otherwise}
\end{cases} \]
(B.44)
2. The membership function for Alp is calculated as follows:

\[
\mu_{\text{low}}(Alp) = \begin{cases}
1, & \text{if } Alp < 20 \\
(35 - Alp)/15, & \text{if } 20 \leq Alp < 35 \\
0, & \text{Otherwise}
\end{cases} \tag{B.45}
\]

\[
\mu_{\text{normal}}(Alp) = \begin{cases}
1, & \text{if } Alp = 80 \\
(Alp - 35)/45, & \text{if } 35 \leq Alp < 80 \\
(100 - Alp)/20, & \text{if } 80 < Alp < 100 \\
0, & \text{Otherwise}
\end{cases} \tag{B.46}
\]

\[
\mu_{\text{high}}(Alp) = \begin{cases}
1, & \text{if } Alp \geq 130 \\
(130 - Alp)/30, & \text{if } 100 \leq Alp < 130 \\
0, & \text{Otherwise}
\end{cases} \tag{B.47}
\]

3. The membership function for SGPT, SGOT, and Gammagt are the same. The calculation of membership function for SGPT is shown as follows:

\[
\mu_{\text{low}}(SGPT) = \begin{cases}
1, & \text{if } SGPT < 20 \\
(38 - SGPT)/18, & \text{if } 20 \leq SGPT < 38 \\
0, & \text{Otherwise}
\end{cases} \tag{B.48}
\]

\[
\mu_{\text{normal}}(SGPT) = \begin{cases}
1, & \text{if } SGPT = 60 \\
(90 - SGPT)/52, & \text{if } 38 \leq SGPT < 90 \\
0, & \text{Otherwise}
\end{cases} \tag{B.49}
\]

\[
\mu_{\text{high}}(SGPT) = \begin{cases}
1, & \text{if } SGPT \geq 140 \\
(140 - SGPT)/50, & \text{if } 90 \leq SGPT < 140 \\
0, & \text{Otherwise}
\end{cases} \tag{B.50}
\]
4. The membership function for drink is calculated as follows:

\[\mu_{\text{low}}(\text{Drink}) = \begin{cases}
1, & \text{if } \text{Drink} \leq 0.1 \\
(0.4 - \text{Drink})/0.2, & \text{if } 0.2 \leq \text{Drink} < 0.4 \\
0, & \text{Otherwise}
\end{cases} \quad (B.51) \]

\[\mu_{\text{normal}}(\text{Drink}) = \begin{cases}
1, & \text{if } \text{Drink} = 0.7 \\
(1.2 - \text{Drink})/0.8, & \text{if } 0.4 \leq \text{Drink} < 1.2 \\
0, & \text{Otherwise}
\end{cases} \quad (B.52) \]

\[\mu_{\text{high}}(\text{Drink}) = \begin{cases}
1, & \text{if } \text{Drink} \geq 1.8 \\
(2 - \text{Drink})/0.6, & \text{if } 1.2 \leq \text{Drink} < 1.8 \\
0, & \text{Otherwise}
\end{cases} \quad (B.53) \]
Appendix C

Some Portion of SQL for FIS of the Developed System

Here, some portion of SQL and snapshot of the developed systems are provided, which is related to the developed fuzzy database system. The system was developed using Microsoft Access 2007. SQL is the most important part of the developed system. Below are some portion of the developed system to generate the membership function.

```
SELECT Table1.Age, IIf([Age]<29,1,
IIf([Age] Between 29 And 38,
Format((38-[Age])/9,"#.00"),0)) AS YoungMF,
IIf([Age]=38,1,
IIf([Age] Between 33 And 38,
Format(((Age)-33)/5,"#.00"),
IIf([Age] Between 38 And 45,
```
Appendix C: Some Portion of SQL for FIS of the Developed System

Format((45-[Age])/7,"#.00"),0)) AS MidMF,
IIf([Age]=48,1,IIf([Age] Between 40 And 48,
Format((([Age]-40)/8,"#.00"),
IIf([Age] Between 48 And 58,
Format(((58-[Age])/10,"#.00"),0))) AS OldMF,
IIf([Age] >= 60,1,IIf([Age] Between 52 And 60,
Format((([Age]-52)/8,"#.00"),0)) AS VeryOldMF,
Maximum([YoungMF],[MidMF],[OldMF],[VeryOldMF])
AS AgeMF,
IIf([AgeMf]=[YoungMF],"Young",
IIf([AgeMf]=[MidMF],"Mid",
IIf([AgeMF]=[OldMF],"Old",
IIf([AgeMf]=[VeryOldMF],"VeryOld"))))
AS SelectedAge,

The above SQL is created for calculation of membership function. Here, format is used to get the result upto two decimal places. After executing the above code we will get the following:

<table>
<thead>
<tr>
<th>Age</th>
<th>YoungMF</th>
<th>MidMF</th>
<th>OldMF</th>
<th>VeryOldMF</th>
<th>AgeMf</th>
<th>SelectedAge</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>VeryOld</td>
</tr>
<tr>
<td>67</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>VeryOld</td>
</tr>
<tr>
<td>67</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>VeryOld</td>
</tr>
<tr>
<td>37</td>
<td>0.11</td>
<td>0.8</td>
<td>0</td>
<td>0.80</td>
<td>Mid</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>0</td>
<td>0.57</td>
<td>0.13</td>
<td>0.57</td>
<td>Mid</td>
<td></td>
</tr>
</tbody>
</table>

Figure C.1: Membership Function calculation for Age of Heart disease diagnosis.
In (C.1), if the input Age = 63, the membership function (MF),

\[\text{youngMF} = 0, \text{MidMF} = 0, \text{OldMF} = 0, \text{and VeryOldMF} = 1. \]

After taking the maximum from all of them, \(\text{Maximum}(\text{youngMF}, \text{MidMF}, \text{OldMF}, \text{VeryOldMF}) = \text{Maximum}(0,0,0,1) = 1 \), which indicates the patient with 63 age falls in \text{veryOld}. This is done in Step 1 (Fuzzification).

The following code is for aggregating the rules.

\[
\text{IIf([HBRules]=[ECGRules], Maximum([HBMF],[ECGMF]) \& [HBrules], IIf([HBrules]=[Genderrule], Maximum([HBMF],[Gender]) \& [Hbrules], IIf([HBrules]=[BPrules], Maximum([HBMF],[BPMF]) \&[HBrules], IIf([HBRules]=[Chestpainrule],}
\]
Appendix C: Some Portion of SQL for FIS of the Developed System

```
FROM Query1;
```

```
Maximum([HBMF],[ChPain]) & [HBrules],
IIf([HBRules]=Exrules,Maximum([HBMF],[Exercise]) & [HBrules],
IIf([HBRules]=ChoRules,Maximum([HBMF],[ChoMf]) & [HBrules],
IIf([HbRules]=AgeRule,Maximum([HBMF],[Agemf]) & [HBrules],
IIf([HBRules]=OldPeakRules,Maximum([HBMF],[OLdPeakMF]) & [HBrules],
IIf([HBRules]=ThalliumRules,
Maximum([HBMF],[TNMF]) & [HBrules]))) AS HB
```
Bibliography

