Presented within this thesis is the preliminary design phases for the development of a morphing winglet mechanism. The mathematical models and analyses conducted within this thesis provide the means for bringing the design concept stage to the testing and validation phases. The kinematic modeling of a proposed design is developed. The inverse kinematics of the system are used to determine the required inputs to meet the range of motion. The velocity models for the system are established for both the forward and inverse cases. The inverse velocity models are used to establish a synchronous behaviour between the two serial linkages. Thus, allowing system operation as a redundantly actuated parallel mechanism. The results of implementation are evaluated for the initial and optimized designs. A proposed velocity profile is developed to facilitate control and desired operation of the system. This is then validated by the testing of the system response and error.