Theses

3-DOF Longitudinal Flight Simulation Modeling And Design Using MATLAB/SIMULINK
3-DOF Longitudinal Flight Simulation Modeling And Design Using MATLAB/SIMULINK
Flight simulators are widely used in aerospace industry for multiple purposes. This paper highlights the importance of engineering flight simulators and presents a 3 degrees-of-freedom longitudinal flight simulation model that can be adopted to simulate aircraft behaviour for engineering analysis. A brief overview of aircraft design process is presented with reference to flight simulation procedure. A special emphasis is placed on Massachusetts Institute of Technology's Athena Vortex Lattice program that can be used to calculate aerodynamic characteristics for a given geometric configuration. The paper explains modeling of aerodynamics and thrust blocks and shows how they can be linked with equations of motion block to build a comprehensive flight simulation model. Matlab script that linearizes and trims equations of motion is also discussed and key stability results are explained in detail. Simulation test cases are also presented. Several recommendations are made at the end of the paper on the potential use of simulators and also on ways of improving the simulation model.
3.3V Transmitter Using 1.8V Transistors In A Cascode Configuration
3.3V Transmitter Using 1.8V Transistors In A Cascode Configuration
A voltage-mode transmitter using a 1.8V-to-3.3V levelshifter and cascoded output buffer is proposed. 1.8V TSMC 65nm transistors are used. The design is targeted to meet JEDEC Interface Standard for Nominal 3 V/3.3 V Supply Digital Integrated Circuits DC Specifications as well as an AC transmission rate of 200 MHz on a 30 cm 50Ω board trace terminated with a 4 pF capacitive load. Overstress voltages will not be exceeded in order to avoid device failure due to breaching Gate Oxide Integrity, Hot Carrier Injection, or Negative Bias Temperature Instability.
35% Carbon Dioxide Reactivity In A Bulimia Nervosa Sample
35% Carbon Dioxide Reactivity In A Bulimia Nervosa Sample
This study extended research on the specificity of the effects of the carbon dioxide (CO₂) challenge by examining panic reactivity in participants with bulimia nervosa (BN) (n=15) compared to those without bulimia nervosa (n=31). All participants completed self-report measures assessing state and trait anxiety, depression, anxiety sensitivity (AS), distress tolerance (DT), discomfort intolerance (DI), and eating disorder features. They subsequently breathed two vital capacity inhalations; room air and 35% CO₂-enriched air. Reactivity to room air was not different between groups. However, participants with BN displayed greater reactivity to CO₂ compared to the participants with BN. AS, DI, and DT could not be tested as potential mediators in the association between diagnostic group and reactivity because these constructs were not associated with reactivity. Eating disorder features and frequency of binges and purges were also not associated with reactivity. Detailed implications and suggestions for further research are discussed.
360-­Degree Video Journalism: an analysis of the different angles of modern technology and news reporting
360-­Degree Video Journalism: an analysis of the different angles of modern technology and news reporting
This paper will analyse and consider 360-­degree videos in the context of previous new technologies and how they changed processes for journalism. Referencing previous research literature, news articles, case studies and my personal experience using 360-­degree videos as a videojournalist, this paper will serve as a conceptual review in order to better understand new considerations that might have to be taken when considering 360-­degree videos for daily news production. Moreover, this paper will review the introduction of liveblogs and Facebook Live, and how each has fundamentally changed journalism. By doing so, this conceptual review will hope to identify unique challenges and successes that 360-­degree video journalism might have for the reporter from a technical, ethical and storytelling point of view.
3D Reconstruction of Exposed Underground Utilities Using Photogrammetric Methods
3D Reconstruction of Exposed Underground Utilities Using Photogrammetric Methods
This thesis addresses the topic of three-dimensional (3D) reconstruction of exposed underground utilities using photogrammetric methods. Research on this topic is mainly motivated by the need for improved information on the location of underground utilities and, thus, to provide reliable information for the management of buried assets. In this thesis, a system of photogrammetric software programs is developed for 3D reconstruction of underground utilities. Camera calibration programs are used for computing interior elements and lens distortion coefficients of digital cameras and saving them in a lookup table (LUT). The accuracy of calibrated image coordinates satisfies the photogrammetric processing demand. An automatic image point detection method is proposed and achieved in these programs. External orientation programs are used for calculating exterior elements of the digital images. Based on geographic information system (GIS) and global positioning system (GPS) techniques, a new ground control points (GCPs) collection method is proposed and implemented in these programs. A 3D reconstruction program provides corresponding functions to obtain and edit 3D information of underground utilities. Epipolar lines are employed as an assisting tool that helps operators easily find homologous points from different digital images. The study results indicate that photogrammetric methods for reconstructing 3D information of underground utilities are effective and low cost.
3D modelling of industrial piping systems using digital photogrammetry and laser scanning
3D modelling of industrial piping systems using digital photogrammetry and laser scanning
Industrial metrology is one of the fastest growing areas in advanced technologies, such as electronics and optics, computation speed, and it has been increased in recent years. There are several tools used in industrial metrology, such as total stations, digital photogrammetry, and laser scanning. Close range digital photogrammetry has been implemented for an industrial piping system in terms of installation, inspection, and replacement. Laser scanning is also used for industrial measurements to generate 3D coordinates points. In order to develop a 3D modelling strategy, this thesis focuses on the development, selection and design of photogrammetric procedures and project specific targets. This thesis also explores image-acquiring sensors such as digital cameras and laser scanners in terms of their capabilities and advantages. Based on experimental setup accuracy, measurements of piping systems are compared for applications of two different sensors.Effects of different surface materials are examined in laser scanning applications and several different types of materials are used for acquiring point clouds data. Measurement of pipes' diameters and residual analyses are conducted with different surface materials, which are used for industrial pipes. Significant improvement in laser scanning data acquisition is examined in terms of data quality both quantitatively and qualitatively during the residual analyses.
3D printed phantom to mimic dynamic softening of cervix during pre-labour
3D printed phantom to mimic dynamic softening of cervix during pre-labour
It is thought that through the development of more realistic training models for midwives and obstetricians it may be possible to reduce the overuse of labour induction. To this end we demonstrate a method for creating pneumatically-controlled phantom cervixes using thermoplastic elastomer, filled with a granular material. The maximum spring constant of the phantom cervix was measured to be 10.5 N/m at -20 kPa deflated air (vacuum) and the minimum spring constant measured was 5.3 N/m at 20 kPa inflated air. The true stress measured on these elastomeric phantom cervixes indicated a maximum stress of 133 kPa and a minimum stress of 94 kPa at 0.15 strain. Discrimination and threshold tests demonstrated that people can distinguish between the hard and soft states of the phantom. Future work will focus on increasing the softness of these devices.
60 seasons : a conversation around the future of food
60 seasons : a conversation around the future of food
The current state of food production in the Western world is leading to the devastation of our land, soil, and air. industrial farms are contributing not just to poor human health, but to the ever increasing depletion of our natural esources, a reduction in the biodiversity of plants and animals and in the sustainability of the planet. 60 Seasons – A Conversation around the Future of Food aims to stimulate the dialogue around healthy and sustainable means of food production by depicting the efforts of two small groups within Northumberland County, Ontario. Their aim is to bring sustainable farming methods to their community, while expanding the discourse around environmentally sound food production and providing healthy food choices to those in need.
A 1.2 V, 8-bit, 100 MHz pipelined analog-to-digital converter
A 1.2 V, 8-bit, 100 MHz pipelined analog-to-digital converter
A 1.2 V, 8 bit, 100 MSample/Sec Pipeline Analog-to-Digital Converter is designed in 0.18-μm standard CMOS technology. An emphasis was placed on observing the low voltage and low power design. The architecture of this ADC is 1 bit/stage pipelined configuration.With above specifications the designed ADC can be applicable for DVI flat-panel display; Giga bit Ethernet on copper, RGB to LCD converter and cable modem. This designed ADC can achieve SNDR 56dB in 100 MHz sampling frequency with 8 bit resolution. Total power dissipation is 40.6mW and INL is around 1 LSB and the maximum swing of the input is 1 Volt peak to peak which is almost rail-to-rail situation. The core area of the ADC excluding pads is around 0.25mm 2 .
A 1.8V 1.1-GHZ Novel 8 X 8-Bit Digital Multiplier
A 1.8V 1.1-GHZ Novel 8 X 8-Bit Digital Multiplier
This thesis presents the design of an 8x8-bit novel multiplier, which can provide a better performance that its counterparts in the sense that it has a fraction of the silicon area, delay and power consumption of the common architectures such as the conventional linear array multipliers. At the system-level high performance is obtained by implementing a pair-wise multiplication algorithm. Also, parallel addition algorithm is used to add up partial products. Combining these two algorithms results in an efficient cell-based circuit realization. In the circuit-level, pseudo-NMOS full adder cell is chosen amongst the several existing full adder cells due to its superior speed and power performance. The performance of this design has been evaluated by comparing it to those of the recently reported multipliers. The results of the comparison, both in theory and simulation, prove the superiority of the proposed multiplier.
A 10 Gbps 4-PAM CMOS serial link transmitter with pre-emphasis
A 10 Gbps 4-PAM CMOS serial link transmitter with pre-emphasis
This thesis presents the design of 10 Gbps 4-PAM CMOS serial link transmitters. A new area-power efficient fully differential CMOS current-mode serial link transmitter with a proposed 2/4-PAM signaling configuration and a new pre-emphasis scheme is presented. The pre-emphasis inthe analog domain and the use of de-emphasis approach decres pre-emphasis power and chip area. The high-speed operation of the transmitter is achieved from the small voltage swing of critical nodes of the transmitter, shunt peaking with active inductors, multiplexing-at-input approach, the distributed multiplexing nodes, and the low characteristic impedance of the channels. The fully differential and bidirectional current-mode signaling minimizes the noise injected to the power and ground rails and the electromagnetic interference exerted from the channels to neighboring devices. A PLL containing a proposed five-stage VCO is implemented to generate multi-phase on -chip clocks. The proposed VCO minimized the phase noise by keeping a constant rising and falling time. Simulation results demonstrate that the current received at the far end of a 10 cm FR-4 microstriop has a 4-PAM current eye width of 185 ps and eye hight of 1.21 mA. It consumes 57.6 mW power with differnetial delay block, or 19.2 mW power with inverter buffer chain. The total transistor area of the transmitter is 26.845 ....excluding the delay block.
A 100 MHz - 1 GHz on-chip-programmable phase-locked-loop
A 100 MHz - 1 GHz on-chip-programmable phase-locked-loop
A programmable wide-range PLL has been designed that can provide 100-MHz to 1-GHz rail-to-rail digital clock signal from a 50-MHz reference clock. The architecture is appropriate for low-power design and is also power-efficient. The system is robust against temperature changes so that the stability of the system is guaranteed. Because of the differential configuration of the sub-blocks and using a voltage-controlled oscillator with a 1Ow. gain and a linear transfer function the system has an acceptable noise rejection.